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ABSTRACT

During the past decade, structural nonlinearities have been utilized to widen the bandgaps of locally resonant metamaterials.
In this paper, a novel metamaterial beam with nonlinear coupled oscillators as its local resonator is developed to enlarge
the low-frequency bandgaps. First, the governing equations of the magnetically coupled metamaterial beam are established
based on the Euler-Bernoulli theory. Subsequently, the transmittance and bandgap properties of such a nonlinear
metamaterial beam are studied. It is revealed that by increasing the coupled nonlinear stiffness effectively broadens the
low-frequency bandgap. A parametric study is conducted to ascertain the effects of critical parameters, such as coupled
nonlinear stiffness, base excitation, and the difference between the two coupled local oscillators, on the bandgaps and
vibration suppression performance. It is observed that the coupled nonlinear stiffness has a significant impact on the
transmittance of metamaterial beams, while the resonant frequency difference has a relatively minor influence on the
transmittance. Meanwhile, the bandgap will shift to high-frequency range as the base excitation increases. Several useful
conclusions are summarized and provided as guidelines for further structural optimization and performance enhancement.

Keywords: nonlinear metamaterial; low-frequency bandgap; magnets; vibration suppression.

1. INTRODUCTION

In recent years, local resonance metamaterials have experienced rapid development and have emerged as an effective
approach for low-frequency vibration reduction in structural applications. Local resonance acoustic metamaterials can be
primarily categorized into linear and nonlinear types. Typical linear models include single-cell structures with either a
single-degree-of-freedom local resonator or multiple local resonators within a single cell. Researchers have utilized these
fundamental models to design structures aimed at broadening the bandgap [1—3]. However, linear acoustic metamaterials
still face significant challenges, such as substantial additional mass and limited effectiveness in reducing vibrations only
at frequencies matching the local resonance. Consequently, there is a pressing need to develop feasible methods that can

overcome these limitations and achieve low-frequency, broadband, lightweight, and efficient vibration suppression.
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Nonlinear acoustic metamaterials have emerged as a promising research direction within the broader field of metamaterials
[4-8]. Nonlinear models can be categorized into three primary types: both the local resonators and the main chain exhibit
nonlinearities; only the main chain exhibits nonlinearity while the local resonators is linear; and only the local resonators
exhibit nonlinearity while the main chain is linear [9]. Utilizing these nonlinear models, researchers can design a variety
of nonlinear acoustic metamaterials. Moreover, nonlinearity introduces unique characteristics, such as amplitude-
dependent bandgaps [10], chaotic bands [6], adaptive bands [11], and high-order harmonics [12]. The incorporation of
nonlinear effects into acoustic metamaterials holds the potential to significantly broaden low-frequency bandgaps and
enhance vibration reduction performance with minimal additional mass. Zhang S et al. [13] designed a novel asymmetric
beam incorporating a series of Duffing resonators. Frequency response analysis was performed using the harmonic balance
method and validated through finite element simulations. The results demonstrated that adjusting the linear or nonlinear
stiffness could effectively tune the bandgap range. Moreover, introducing softening nonlinearity resulted in an ultra-wide
bandgap, which was nearly three times wider than the linear bandgap. Xue Y et al. [14] introduced a new type of spring-
lever-MRE nonlinear local resonant metamaterial. When the excitation amplitude was set to 10~ mm and the lever ratio
increased from 1 to 4, the bandgap range shifted from 290.4 Hz - 481.7 Hz to 36.3 Hz - 60.1 Hz, achieving broadband

vibration attenuation at extremely low frequencies.

Despite significant advancements, broadening the bandgap at low frequencies remains a challenge for nonlinear acoustic
metamaterials. To explore additional methods for enhancing low-frequency bandgaps, this paper proposes a novel coupled
nonlinear metamaterial beam and analyzes its behavior using nonlinear inner coupling. The main contents of this paper are
as follows: Section 2 derives the equations of motion for the coupled nonlinear metamaterial beam; Section 3 examines

the transmittance of the beam and the influence of various parameters; Section 4 summarizes the key findings.

2. MATHEMATICAL MODELING

Figure 1 illustrates the finite-length model of the coupled nonlinear metamaterial beam. The main beam has a length L and
is equipped with Sunit cells, each spaced at a constant interval d; along its length. Within each unit cell, two local resonators
are positioned at a distance d> apart. To minimize mutual interference between adjacent unit cells, d; should significantly
larger than d». For convenience, the two local resonators within each unit cell are named as LR 1 and LR 2. The mass,
stiffness, and damping coefficients of LR 1 are denoted as m;, k1, and c1, respectively; those for LR 2 are ma, k», and ¢,
respectively. The two local resonators are interconnected via a nonlinear spring. The left end of the beam is clamped, and

base excitation wy(f) = Wpe'! is applied at this fixed end, characterized by a base acceleration Ae. = —w*W.
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Figure 1 Finite-length model of the coupled nonlinear metamaterial beams

Based on Euler-Bernoulli beam theory, the governing equation for the coupled nonlinear metamaterial beam can be written
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where w(x,?) is the absolute displacement of the main beam at position x , wyi(x,?) is the displacement of the main beam
relative to the foundation, wy.(x,f) = w(x,f) - wi(f) . EL, p and A are the bending stiffness, density and cross-section area
of the host beam, respectively. cs is the equivalent strain rate damping constant. F;! and F} are the reaction forces exerted
by LR 1 and LR 2 in the jth cell onto the beam, respectively; J(x) is the Dirac delta function.

The governing equations of LR 1 and LR 2 at jth cell are given as:

mlu’}(t)+clu}(t)+k1u}(t)+kc(u} (t)+w(x},t)—uf(t)—w(xf,t))+k3(u} (t)+w(x§,t)—uf (t)—w(xf,t))3 =—mW(x;,t)

M, U2 (8) + U5 (t) + k,u? (1) + K, (uf(t)+w(xf,t)—u} (t)—w(x},t))+ ks(uf (t)+w(xj2,t)—u} (t)—w(x},t))3 = —m,W(x],t)

)

where, ;! and u? are the displacements of LR 1 and LR 2 relative to the host beam in jth cell. k. is the coupled linear
stiffness, k3 is the coupled nonlinear stiffness.

Using the modal superposition method, the relative displacement along the beam can be written as

W, (x,t):gyﬁk(x)nk (t) (k=123..) ©)

where functions ¢i(x) are the normalized mode shape functions of the plain beam and functions 7i(¢) are the modal
coordinates.
Substituting Eq. (3) into Eq. (1), multiplying by ¢,(x), and integrating over the beam length from zero to L, using the

orthogonal conditions, the modal governing equation is obtained as:
.. . 2 iot [& [ et 1) pict 2 2\ pict
i, (1) + 26,00, (8) + 0, (1) = pAE™ [ 4, (X)dx = Y[ Flg, () )e™ + FFg, (X} )e™ | @
1
where {, = ¢lw, /(2E).
By solving Eq. (4), the modal coordinates can 7,(t) be obtained. Substituting the coordinates back to Eq. (3), the host

beam’s deflection can be obtained as
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The reverse force of LR 1 and LR 2 can be represented by:

{F; =—[ i (t)+ ki ()] (6)

F2=—[cu? (t)+ku?(1)]

The transmittance of the host beam is
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3. TRANSMITTANCE AND PARAMETRIC STUDY
3.1 Transmittance

To conduct a preliminary investigation of the transmittance of coupled nonlinear metamaterial beams, the governing
equations were numerically solved using the fourth-order Runge-Kutta method. The frequency sweep rate was set to 0.01
Hz/s, and the base excitation amplitude was 0.1 m/s?. Frequency sweep simulations were performed using the parameters
listed in Table 1.

Table 1 Structural Parameters of Nonlinearly Internally Coupled Metamaterial Beams

Parameter Value Parameter Value

Equivalent mass, m1 [g] 10 Equivalent mass, m2 [g] 5

Equivalent damping coefficient, ¢ [N-m/s]  2.3x10* Equivalent damping coefficient, ¢2 [N-m/s] 1.8x10*

Equivalent stiffness, &1 [N/m] 246.49 Equivalent stiffness, k2 [N/m] 315.5
Linear coupling stiffness, kc[N/m] -35 Nonlinear coupling stiffness, k3[N/m?] 35x10%
Beam length, L [m] 0.47 Beam width, b [m] 0.02
Beam thickness, 4 [m] 0.001 Beam density, p [kg/m?] 7860
Beam Young’s modulus, £ 200x10° Number of oscillators, S 10
Distance of unit cell, di [mm] 56 Distance of resonators d> [m] 38

Figure 2 illustrates the transmittances of the linear configuration and that of the coupled nonlinear metamaterial beam with
a coupled nonlinear stiffness k3 of 35 x 10* N/m?. It is shown that the linear configuration exhibits two bandgaps 24.90Hz—
31.12Hz and 38.60Hz-57.40Hz. After introducing nonlinear inner coupling, these bandgaps shift to 22.80Hz—-27.16Hz and
36.50Hz—57.40Hz, respectively. For the first bandgap, both the starting and cutoff frequencies shift towards lower
frequencies, resulting in a bandwidth reduction of 1.86 Hz. The second bandgap's cutoff frequency remains constant at
57.40 Hz, while its starting frequency decreases from 38.60 Hz to 36.50 Hz, increasing the bandwidth from 18.9 Hz to
21.0 Hz. In summary, the introduction of coupled nonlinear makes the bandgaps shift towards lower frequencies and

broadens the second bandgap.
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Figure 2 Transmittance of the uncoupled linear and coupled nonlinear metamaterial beam(k3=35%10*N/m?)
3.2 Parametric study

As demonstrated in the previous section, the introduction of coupled nonlinear can effectively broaden the low-frequency
bandgap. In this section, we will further investigate the effects of parameters, including coupled nonlinear stiffness, base
excitation amplitude, and the natural frequencies of the two local resonators within a unit cell, on the transmittance of the

metamaterial beam.
3.2.1 Effect of coupling stiffness

Figure 3 illustrates the transmittance of the metamaterial beam for coupled nonlinear stiffnesses of 15 x 10* N/m?, 25 x
10* N/m?, and 35 x 10* N/m>. As discussed in the previous section, the linear configuration exhibits two bandgaps 24.90Hz—
31.12Hz and 38.60Hz—57.40Hz. After introducing nonlinear internal coupling, when the stiffness is set to 15 x 10* N/m?,
the bandgap ranges shift to 24.13Hz—29.50Hz and 37.50Hz-57.40Hz. Bandgap 1 shifts towards lower frequencies, with
its bandwidth decreasing by 0.85 Hz; the cutoff frequency of bandgap 2 remains unchanged, while its starting frequency
decreases from 38.60 Hz to 37.50 Hz, expanding the entire bandgap range from 18.90 Hz to 20.00 Hz, an increase of 1.1
Hz. When the coupled nonlinear stiffness increases to 25 x 10* N/m?, bandgap 1 continues to shift towards lower
frequencies, changing its range to 23.40 Hz to 28.40 Hz, resulting in a bandwidth reduction of 1.22 Hz compared to the
linear configuration. The cutoff frequency of bandgap 2 remains constant, while its starting frequency decreases from
38.60 Hz to 37.00 Hz, expanding the entire bandgap range from 18.90 Hz to 20.50 Hz, an increase of 1.6 Hz. Finally, when
the coupled nonlinear stiffness reaches 35 x 10* N/m?, both the starting and cutoff frequencies of bandgap 1 shift towards
lower frequencies, reducing the bandwidth by 1.86 Hz. The cutoff frequency of bandgap 2 remains unchanged, while its
starting frequency decreases from 38.60 Hz to 36.50 Hz, expanding the bandgap from 18.9 Hz to 21 Hz, an increase of 2.1
Hz.

In summary, the introduction of nonlinear internal coupling results in the following changes as the coupled nonlinear
stiffness gradually increases: the cutoff frequency of bandgap 1 shifts progressively towards lower frequencies, and its
bandwidth narrows; the cutoff frequency of bandgap 2 remains constant, while its starting frequency shifts progressively
towards lower frequencies, leading to an expansion of its bandwidth. Consequently, the addition of coupled nonlinear

enables the broadening of the low-frequency bandgap.
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Figure 3 Transmittance of the metamaterial beam for different coupled nonlinear stiffnesses

3.2.2 Effect of base excitation

Subsequently, the influence of base excitation on the transmittance of the metamaterial beam with a coupled nonlinear
stiffness of 15 x 10* N/m? is analyzed, as shown in Figure 4. The results indicate that when the base excitation amplitude
Ace = 0.1 m/s?, the minimum transmission loss for the two bandgaps are -39.20 dB and -37.52 dB, respectively. When the
base excitation increases to 4. = 0.3 m/s?, the cutoff frequency of bandgap 1 remains unchanged, while its starting
frequency shifts towards higher frequencies, resulting in a bandwidth reduction from 5.27 Hz to 4.77 Hz. Additionally, the
minimum transmission loss for bandgap 1 decreases from -39.20 dB to -46.34 dB, and for bandgap 2, it decreases from -
37.52 dB to -52.12 dB . When the base excitation further increases to 0.5 m/s? the starting frequency of bandgap 1
continues to shift towards higher frequencies, reducing the bandgap range from 5.27 Hz to 4.11 Hz. The minimum
transmission loss for both bandgaps decrease to -49.18 dB and -61.37 dB, respectively. In summary, as the base excitation

increases, the bandwidth of bandgap 1 decreases and shifts towards higher frequencies, while the minimum transmission

loss for both bandgaps also decrease.
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Figure 4 Transmittance of the metamaterial beam for different base excitations
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3.2.3 Effect of the intrinsic frequency of local resonators

Finally, the impact of the natural frequencies of the two local resonators within a unit cell on the transmittance is
investigated. As illustrated in Figure 5(a), when the natural frequencies of LR 1 and LR 2 are set to 25 Hz and 35 Hz
respectively, the linear configuration exhibits bandgap ranges of 24.89 Hz - 29.95 Hz and 34.20 Hz - 52.30 Hz. After
introducing a coupled nonlinear stiffness of 15 x 10* N/m?, the bandgap ranges shift to 24.20 Hz - 28.20 Hz and 33.20 Hz
- 52.30 Hz. Consequently, the bandwidth of bandgap 1 decreases by 1.06 Hz, while that of bandgap 2 increases by 1 Hz.
When the natural frequencies of LR 1 and LR 2 are set to 25 Hz and 40 Hz respectively, the linear configuration exhibits
bandgap ranges of 24.90 Hz - 31.12 Hz and 38.60 Hz - 57.40 Hz. After introducing the same coupled nonlinear stiffness,
the bandgap ranges change to 24.13 Hz - 29.50 Hz and 37.50 Hz - 57.40 Hz. The bandwidth of bandgap | decreases by
0.85 Hz, while that of bandgap 2 increases by 1.1 Hz. When the natural frequencies of LR 1 and LR 2 are set to 25 Hz and
50 Hz respectively, the linear configuration exhibits bandgap ranges of 24.83 Hz - 32.77 Hz and 47.00 Hz - 68.80 Hz.
After introducing the coupled nonlinear stiffness, the bandgap ranges change to 24.10 Hz - 31.12 Hz and 46.00 Hz - 68.80
Hz. The bandwidth of bandgap 1 decreases by 0.92 Hz, while that of bandgap 2 increases by 1 Hz. In summary, the natural

frequencies of the local resonators have a relatively minor influence on the overall transmittance of the coupled nonlinear
metamaterial beam.
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Figure 5 Transmittance of the metamaterial beam for different LR intrinsic frequency

4. CONCLUSIONS

This study investigates a coupled nonlinear metamaterial beam. The governing equations for the metamaterial beam and
its resonators are derived, followed by an initial analysis of the transmittance using numerical simulations. Subsequently,

the effects of coupled nonlinear stiffness, base excitation, and the natural frequencies of the two local resonators within a

unit cell on the transmittances are examined.

The following conclusions are drawn:

(1) Compared with the linear configuration, after adding nonlinear coupling, the bandgap 1 shifts towards low frequency

and its bandwidth narrows; the cutoff frequency of the bandgap 2 remains unchanged, but its starting frequency shifts
towards low frequency and its bandwidth increases.

(2) Parameter analysis reveals that the coupled nonlinear stiffness has the most significant impact on the transmittance of
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the metamaterial beam. In contrast, the natural frequencies of the two local resonators within a unit cell have a
relatively minor influence. Increasing the coupling stiffness results in a broader bandgap range for the bandgap 2.

Therefore, employing a higher coupled nonlinear stiffness can effectively broaden the low-frequency bandgap.
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