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In brief

This work presents a bio-inspired energy
harvester that mimics the mantis shrimp’s
ultrafast strike mechanism, enabling
consistent energy output independent of
excitation frequency or speed. The
system reliably captures kinetic energy
from footsteps or passing vehicles,
supporting a wide range of self-powered
loT applications. Demonstrated in
transportation scenarios, it powers radar
and image capture modules for hazard
detection without batteries. By
integrating biomechanics with
sustainable energy technology, this work
offers a scalable solution for battery-free
surveillance and next-generation smart
infrastructure.
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THE BIGGER PICTURE The quest for sustainable power solutions drives innovation in bio-inspired energy
harvesting. This study transcends conventional biomimicry by enhancing nature’s design—transforming
the mantis shrimp’s strike mechanism into a carefully engineered system that employs latch-mediated en-
ergy conversion and overcomes biological limitations. Beyond generating record-high power density, the
system seamlessly integrates kinetic energy harvesting with ubiquitous Internet of Things (loT), enabling bat-
tery-free sensing and communication at the edge. Such bio-inspired engineering could fundamentally revo-
lutionize 10T networks by enabling self-powered operation through converting commonplace mechanical
motions, such as human footsteps and vehicle-induced vibrations, into reliable energy sources applicable
across diverse domains. By uniting biomechanics, electromagnetic transduction, and deep learning, this
work has outlined a scalable and maintenance-free framework for next-generation monitoring systems in
transportation and security infrastructure.

SUMMARY

Inspired by the ultrafast strike of the mantis shrimp, we present an energy harvester (mantis shrimp-inspired
energy harvester [MSEH]) that employs an enhanced latch-mediated spring actuation (LaMSA) mechanism,
functionally surpassing its biological counterpart, to enable highly efficient mechanical-to-electrical energy
conversion. The MSEH delivers a peak voltage of 60 V and a maximum instantaneous power of 7.74 W,
yielding up to 44.24 mJ per trigger and exceeding the power density of most existing electromagnetic energy
harvesters. Field tests confirm that four MSEH units integrated into a compact power-generating floor can
collectively produce approximately 180 mdJ, subjected to a single trigger, sufficient to power an ultra-low-po-
wer radar or image-sensing module for Internet of Things (IoT) applications. The radar enables real-time
vehicle proximity detection, while the camera captures and transmits images to a ConvNeXt model for object
recognition. These findings underscore the MSEH’s exceptional power density (1,867.41 W/m?®), reliable
energy output, and potential to support scalable, self-powered intelligent systems.

INTRODUCTION imal kingdom with an acceleration reaching 10° rad/s? in water.®

The impact is so extreme that it can even generate cavitation
Predators in nature have evolved a variety of astonishing mech-  bubbles,® a phenomenon where the strike creates vapor-filled
anisms, and one of the most remarkable examples is the deadly  cavities that collapse with immense energy, producing second-
strike of the mantis shrimp.'™ This small but powerful creature  ary shockwaves. Unlike artificial technologies, such as tor-
can deliver one of the fastest and most forceful strikes in the an-  pedoes or super-cavitating submarines, mantis shrimps achieve
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this effect effortlessly despite their centimeter-scale body size.
This highlights the exceptional efficiency of the mantis shrimp
in energy utilization and transformation. Its extraordinary evolu-
tionary adaptation has inspired innovative bioengineered de-
signs.” While the biomechanics of the mantis shrimp have
been extensively studied®'® and researchers have developed
mechanical systems to replicate its formidable strike,>'*'° the
profound potential of its highly efficient energy transformation
mechanism remains largely unexplored, with little effort devoted
to harnessing it for practical applications. Unlocking this bio-
inspired energy conversion mechanism could lead to ground-
breaking advancements in fields such as energy harvesting,
impact mitigation, and high-speed actuation systems.

Bio-inspired energy conversion and harvesting have garnered
increasing attention'’ " as researchers strive to develop effi-
cient and sustainable methods for collecting energy from the
ambient environment. Many insects and certain animals with
specialized biomechanics exhibit remarkable energy conversion
mechanisms, such as latch-mediated spring actuation
(LaMSA)'®?? and muscle-spring power modulation,® that
enable gradual storage and rapid release of energy to generate
high-speed movements. These biological principles have
inspired the development of engineered systems that embed
elastic energy storage within their structures, exemplified by ro-
botic manipulators featuring spring-latch modules'® and soft ro-
bots capable of insect-like jumping.’* By embedding energy
storage into robotics, they envisioned the potential for efficient
and multifunctional energy utilization.?® In addition, triboelectric
and/or piezoelectric nanogenerators have been inspired by the
locomotion of animals, such as human walking and fish swim-
ming, to harvest mechanical energy from kinetic motion.?¢>%
Meanwhile, bioelectric energy harvesters have been developed
based on the ion exchange mechanism of electric eels, enabling
artificial power generation through electrolyte transport.>*='

Despite these advancements, most bio-inspired energy gen-
erators and harvesters primarily mimic form, motion, or structural
efficiency rather than fully exploiting biomechanical energy
transformation. Moreover, they remain largely underdeveloped,
with limited power generation capacity, rendering them imprac-
tical for real-world applications. The ultrafast biomechanical en-
ergy transformation discussed in this work, such as the mantis
shrimp’s deadly strike, remains largely untapped. This gap pre-
sents an opportunity to develop novel and high-power-density
energy conversion systems that can harness motion for applica-
tions in self-powered electronics, intelligent monitoring, and
autonomous systems.

Leveraging the biomechanics behind the mantis shrimp’s
deadly strike, as illustrated in Figure 1A, we translated its func-
tional anatomy into a biomimetic framework. As shown in
Figure 1B, the saddle acts as an elastic energy storage element,
while the merus-carpus linkage and latch system work in coordi-
nation to regulate energy accumulation and rapid release. This
biological actuation follows a three-phase sequence—energy
input, storage, and release—conceptually illustrated in
Figure 1C using an archery analogy. Drawing on these principles,
we designed the mantis shrimp-inspired energy harvester
(MSEH) with analogous components: buffer springs to store
elastic energy; a dual-latch system, consisting of a self-locking
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latch and a button latch, to control the storage and release
phases; and a magnet array that, upon release, moves at high
speeds to induce an electromotive force via electromagnetic in-
duction. The integration of these components into a compact
mechanical system is shown in Figure 1E. It utilizes a latch-medi-
ated energy storage/release mechanism, mimicking the mantis
shrimp’s spring-actuated appendage to achieve rapid energy
transformation (Figures 1F-1l). It is worth mentioning that while
many biological and bio-inspired systems are highly efficient,
they are typically constrained to small sizes."® Scaling them up
to larger dimensions while preserving their efficiency is chal-
lenging. This is exemplified by the fact that certain specialized
biological mechanisms in insects (e.g., trap-jaw ants®* and frog-
hoppers®®) exhibit remarkably higher efficiency, quantified in
terms of power amplification,®* than those in large mammals
(e.g., cheetahs®® and humans®®). One significant breakthrough
presented in this work is evident through the comparison in
Table S8, where our proposed MSEH outperforms existing de-
signs®>**37*1 by achieving a mass increase of several orders
of magnitude while maintaining high efficiency. Beyond those
biomimetic advantages, the MSEH also demonstrates superior
performance compared to conventional energy harvesters.
Figure 1D presents a comparison with representative examples
from the literature,*?~*° where the MSEH is distinctly positioned
in the top left corner—indicating a significantly higher power
density than all other designs while retaining a relatively compact
volume. By efficiently converting slow external forces into high-
speed motion, then electricity, the MSEH is an ideal candidate
for self-powered intelligent surveillance systems.

To explore the great potential of this MSEH and demonstrate
its practical application, we integrate MSEH units into an auton-
omous intelligent monitoring system (Figure 1J), where the har-
vested energy powers a radar sensor and/or an ultra-low-power
camera for motion-triggered safety alerts and notifications. We
further integrate a deep learning model for object recognition
based on the ConvNeXt architecture into the system, enabling
precise differentiation between pedestrians and vehicles. The
system’s performance and functionality are thoroughly evalu-
ated. Our results demonstrate that four MSEH units generate
sufficient energy to power the radar or camera system, while
deep-learning-model-based object recognition achieves high
classification accuracy. This bio-inspired approach provides a
scalable, efficient, and sustainable solution for motion-triggered,
energy-autonomous surveillance, with promising applications in
intelligent transportation, security monitoring, and smart urban
infrastructure.

RESULTS AND DISCUSSION

Bio-inspired mechanism design

Figure 2A provides an overview of a mantis shrimp, highlighting
the key anatomical features that enable its powerful strike. The
inset illustrates that its appendage comprises three main com-
ponents: a spring-loading mechanism, a rotating joint, and a
latch system. In biomechanical terms, the spring-loading mech-
anism is an elastic exoskeleton that stores potential energy when
compressed, while the latch system controls the release of this
energy. When preparing to strike, the latch system is activated
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Figure 1. Overview of the mantis shrimp-inspired energy harvester and its application in energy-autonomous intelligent surveillance

(A) lllustration of a mantis shrimp executing its deadly strike.

(B) Bio-structure of a mantis shrimp’s appendage.

(C) Conceptual analogy illustrating the energy storage and release mechanism behind a mantis shrimp’s powerful strike, likened to archery: energy is first input
and stored and then rapidly released.

(D) Comparison of the volume power density of the mantis shrimp-inspired energy harvester (MSEH) with existing designs, highlighting its superior performance.
(E) Exploded view of the MSEH, showing key components including the self-locking latch, button latch, buffer springs, magnets, and coils.

(F and G) Schematic of the self-locking latch and button latch switches, mimicking the shrimp’s latch-mediated mechanism.

(H) The magnet-based launch mechanism assembly.

(I) The magnet array and coils for mechanical-to-electrical energy conversion.

(J) Integration of MSEH units into a power-generating floor for intelligent surveillance applications. The harvested energy powers low-power devices such as
radars and cameras, enabling motion-triggered monitoring for smart transportation and security systems.

(latched/latch on) to hold the appendage in place and preventit tem is released (unlatched/latch off). Upon release, the energy
from rotating. At the same time, extensor muscles contract, stor-  stored in the spring is rapidly converted into kinetic energy, pro-
ing energy in the spring-loading mechanism. Then, the latch sys-  pelling the shrimp’s appendage with explosive force. The two
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Figure 2. Mantis shrimp-inspired latch-mediated energy storage and release mechanism
(A) The biomechanical structure of a mantis shrimp’s raptorial appendage, highlighting the spring-loading mechanism, rotating joint, muscles, and latch system
responsible for its ultrafast strike. Image of mantis shrimp, copyright Joel Sartore/Photo Ark.
(B) lllustration of the latched and unlatched states, showing how the latch mechanism controls energy storage and rapid release.

(C) lllustration of the latch-mediated energy release process divided into five distinct phases. The top row shows high-speed camera snapshots capturing the
sequential motion, and the bottom rows illustrate the self-locking latch (i) and button latch (ji). Video S1 offers an overview of the complete process along with a
slow-motion demonstration of MSEH operation.

(D) Velocity and displacement profiles of the magnet array throughout the entire process, highlighting the phase transition and high-speed acceleration.

(E and F) Zoomed-in displacement and velocity curves within phases I-lll, demonstrating the dynamic details upon energy release.
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images on the left in Figure 2B depict the latched and unlatched
states of the mantis shrimp’s appendage, offering a clear repre-
sentation of how the latch system secures the appendage in
preparation for the strike and how the energy is released when
it transitions to an unlatched state. The simplified structures
and schematics on the right provide a more detailed view of
the mechanism, highlighting the function and operational states
of the latch system during energy storage and release.

Inspired by the mantis shrimp’s strike mechanism, we present
a mechanically replicated design, referred to as an MSEH. As
shown in Figure 2C, the MSEH can transform static loading
into kinetic energy, manifested as ultrafast movement, and
then convert it into electricity via electromagnetic induction.
Similar to, yet distinct from, the biological latch system, our me-
chanical system features a two-part latch mechanism: a self-
locking latch (Figure 2C-i) and a button latch (Figure 2C-ii). The
self-locking latch works based on a mechanism that combines
both spring tension and a button press to secure and release a
system. When pressed, the button compresses the spring, mov-
ing a locking component into position to secure the latch in a
locked state, preventing any unwanted movement or release.
Pressing the button applies a force that compresses the spring
and disengages the latch, allowing the locked parts to move
freely. The button latch, as its name suggests, uses a button
mechanism that, when pressed, compresses a spring. Once
the force is removed, the button latch returns to and remains in
the latched state. When a force is applied to the button—the sil-
ver part with an internal spring, as shown in the sequential im-
ages from 0 s to 0.2 s in Figure 2C-ii—a linkage mechanism
will compress the wedge-shaped button in tandem, thereby
releasing the component it previously blocked.

According to the biomechanical analysis of the mantis shrimp,
its strike process can be divided into three phases. The working
flow of our mechanism is more intricate and is divided into five
phases. It is important to note that after the strike, the mantis
shrimp’s appendage cannot return to its initial latched state
autonomously unless the extensor muscles contract again.
Through a sophisticated design, our mechanical system not
only mimics the energy storage and release mechanism
observed in biological systems but also incorporates a self-reset
feature (Figure S6), which is absent in nature. Unlike the mantis
shrimp, which relies on active muscle contraction to relatch,
our system autonomously resets via rebound and a dual-latch
mechanism (Figure S1), representing a notable advancement
over its biological counterpart. As shown in Figure 2C, the red
and blue three-colored block furthest left, corresponding to the
silver block in the subsequent images, consists of three magnet
strips arranged in parallel. The magnet array is equivalent to the
mantis shrimp’s appendage, which is a movable structure that
carries kinetic energy after the strike is conducted. Once the
latch system is released, the stored energy is transferred to the
magnet array, initiating ultrafast movement. This movement
passes over the coils beneath, inducing electrical potentials
in them.

At the beginning of phase |, the magnet array is firmly secured
in its initial position by both the self-locking latch and the button
latch, preventing any rightward motion and preparing it for
elastic energy loading. Notably, the bottom housing, made of
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acrylic, features a two-part structure separated by reset springs,
as shown in Figure 2C. During phase Il, a horizontal force is
applied to bring the two separate parts closer together, com-
pressing both the buffer springs, which mimic the mantis
shrimp’s spring-loading behavior, and the reset springs sepa-
rating the two parts of the bottom housing. During this phase, po-
tential energy is gradually stored in the buffer springs. As de-
picted in Figures 2C-i and 2C-ii, the buttons of the two latch
switches are being pressed. Once the relative horizontal dis-
tance between the two separate parts of the bottom housing de-
creases below a threshold, the system transitions into phase Ill,
where the two latch switches are disengaged, allowing the mag-
net array to move freely to the right. The potential energy stored
in the buffer springs is released and converted into the kinetic en-
ergy of the magnet array. Figure 2D presents the time-history re-
sponses of displacement and velocity for the magnet array
throughout the entire cycle, highlighting the dynamic behavior
during phases I-lll and explicitly defining the rebound point,
where the magnet array reaches its maximum displacement
and the velocity momentarily drops to zero. Figures 2E and 2F
offer close-up views of the displacement/velocity profiles across
phases I-lll. As demonstrated in Figure 2E, the velocity of the
magnet array rapidly increases from the start of phase lll. In
the second half of phase lll, after the magnet array reaches the
rightmost boundary, it rebounds due to the impact with the
rebound springs. Note that ball chutes are installed beneath
the magnet array to minimize friction.

Phase IV begins with the re-engagement of the self-locking
latch. As the magnet array rebounds and impacts the latch
mechanism, it becomes securely hooked. Although the array
is restrained, minor residual kinetic energy induces slight
underdamped oscillations, as shown in Figure 2D. Phase V
marks the final stage, initiated by the removal of the external
force. The reset spring then actuates, returning the shell and
button latch to their initial positions and preparing the system
for the next cycle. Note S1 provides a detailed description of
the five phases and the dual-latch mechanism, and a slow-mo-
tion video (Video S1) demonstrating the whole operation pro-
cess is also available in the supplemental information.
Throughout the whole process, it is clear that the magnet array
carries substantial kinetic energy during phase lll. Therefore,
this phase is used for energy transformation. With three coils
installed beneath the ball chutes, the passing magnet array in-
duces electrical potentials via electromagnetic induction,
which can then be collected by appropriate circuits.
Figure S37 and Table S10 present the energy transformation
within various components of the MSEH throughout its five
operational phases.

Power capability characterization

Though not depicted in Figure 2, the bio-inspired energy
harvester, MSEH, has a top cover integrating three additional
coils to improve energy harvesting efficiency. This MSEH is
further enclosed in specially designed structures (as shown in
Figures S5-S8), which can convert the vertical force applied
on the top of the structure into horizontal compression, thus
triggering the bio-inspired kinetic amplification of the MSEH.
The energy in the amplified kinetic motion is then converted
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into electricity via electromagnetic induction. A finite element
(FE) model was developed in ANSYS Maxwell, and Figure 3A
shows the simulated magnetic field distribution, illustrating
the magnet array’s motion through alternating pole coils. Both
the 3D and cross-sectional views highlight magnetic flux den-
sity, with stronger fields near the poles and coils. Figure 3B
compares the simulated and experimentally measured voltage
responses of six individual coils (coil #01 to coil #06) during a
single impulse event.

Coils #01, #02, and #03 are embedded in the top cover, and
coils #04, #05, and #06 are in the bottom housing. Due to sym-
metrical placement, voltage profiles are nearly identical across
pairs, with variations mainly attributed to positional effects. For
instance, coil #03, being near the right-hand-side boundary, ex-
hibits clustered responses due to shorter induction intervals.
Peak AC voltages exceed 60 V across coils. Figure 3C shows
the peak power output of each coil under different load resis-
tances. Maximum power (~7.74 W) occurs at ~610 Q, matching
the internal resistance of the coils for optimal energy transfer.
Figure 3D depicts the force-displacement relationship before
latch release. Applied force compresses buffer springs, storing
energy until a critical displacement of ~9.14 mm and a force of
~296.9 N trigger the release. Figures 3E-3H show charging per-
formance with different capacitors (47 pF—1 mF). Voltage profiles
reveal slower charging for larger capacitors. The effective power
decreases with increasing capacitance (Figure 3G). Fortunately,
harvested energy (Figure 3F) is less sensitive. Maximum energy
(~44.24 mJ) is achieved with a 100 pF capacitor. Figure 3H
shows the corresponding charging times.

By replicating the bio-inspired latch-controlled mechanism,
the MSEH ensures consistent output by storing a fixed amount
of energy in buffer springs per trigger, regardless of excitation
frequency or speed. This results in uniform kinetic energy release
and thus consistent electrical output—even under slow, quasi-
static excitations—enhancing robustness and efficiency. Two
scenarios were designed to demonstrate consistency. In the first
(Figure 3l), a single MSEH was integrated into a floor tile proto-
type (Figure S7) and tested with 10 volunteers (body weight:
59.4-100.5 kg). Despite varying body weights, voltage and en-
ergy outputs remained consistent, with maximum and minimum
voltages of 27.25 and 25.74 V, corresponding to 37.68 and 33.14
mJ, respectively. Video S2 presents a demonstration of a single
MSEH effectively powering real-world devices. In the second
scenario (Figure 3J), four MSEHs were embedded in a larger
floor tile (Figure S8) for vehicle testing. As a vehicle passed at
various speeds, the MSEHs were reliably activated, converting
mechanical input into electricity. Connected in parallel and
paired with a 220 pF capacitor, the MSEHs produced voltage
outputs ranging from 31.62 to 30.61 V and energy from 95.23
t0 90.28 mJ. Although four units were used, the total energy har-
vested was less than four times that of a single unit due to circuit
complexity, parasitic resistance, and asynchronous triggering.
Notably, during each vehicle pass, the MSEHs were triggered
twice—once by the front wheel and once by the rear. Taking
both activations into account, the total energy harvested
by the four MSEHs during a single pass was approximately
180 mJ. A demonstration of the system powering real-world
loads is shown in Video S3.

6 Device 3, 100903, November 21, 2025

Device

Integration with an ultra-low-power radar system
Leveraging the mantis shrimp-inspired latch mechanism, the
MSEH demonstrates high efficiency in converting ultra-slow mo-
tion into electricity, requiring only ~296.9 N of activation force —
well below an average adult’s body weight. This makes it suitable
for event-triggered applications like intelligent transportation
surveillance. In the first case study, MSEH units are utilized to
power an ultra-low-power radar system for vehicle detection.
Figure 4A demonstrates the radar sensor’s directional perfor-
mance under two placements: horizontal and elevated (3 m).
The elevated setup provides significantly better coverage and
thus was adopted for field deployment.

Figure 4B outlines the radar system’s working principle. When
no vehicle is within 7 m (scenario i), the radar remains on
standby. If a vehicle enters within 7 m (scenario ii), the radar ac-
tivates and triggers a Bluetooth alert to nearby pedestrians,
enhancing safety in areas with visual obstructions. Figure 4C il-
lustrates the operating sequence: once activated by harvested
energy, the radar system powers on, completes a 3-s self-test,
and enters detection mode. If a target is detected, Bluetooth
communication is triggered to transmit warning signals, which
are displayed on users’ mobile devices. After the vehicle exits
the sensing range, the radar enters a short lockout period before
resetting.

Figure 4D and Video S4 demonstrate a real-world implemen-
tation, where eight MSEH units are integrated into a power-
generating floor installed beneath a speed bump. The MSEHs
are divided into two groups positioned on either side of the
bump, ensuring that each wheel (left or right) activates one group
as it passes. Since the energy from four MSEH units is sufficient
for the power supply, only one group was connected to the cir-
cuit during testing, while the other served as a backup. The har-
vested energy powers a radar sensor that detects vehicles and
communicates warnings. Figure 4D-iv illustrates the specific
application scenario, where a narrow pedestrian pathway, as
indicated by the yellow arrow, intersects with a roadway, as indi-
cated by the white arrow. As highlighted, a visual blind spot ob-
structs the line of sight between pedestrians and approaching
vehicles, posing a potential safety risk.

Although MSEHSs are efficient, the energy harvested from a
passing vehicle is still limited. Therefore, the radar system
must be engineered for ultra-low-power operation. Figure 4E
presents the circuit architecture, including the energy manage-
ment unit (EMU), microwave radar sensor, microcontroller unit
(MCU), and Bluetooth module. The AC output from the MSEH
units is rectified to DC and then managed by the EMU (based
on LTC3588-1), which stabilizes the voltage and prevents pre-
mature power delivery by an under-voltage lockout (UVLO)
feature. The EMU is essential for ensuring the efficient and safe
utilization of the harvested energy. Without it, the rapid charging
of the storage capacitor could result in voltage surges that may
irreversibly damage downstream electronics. In this work, the
LTC3588-1 module was configured with UVLO settings,
including a turn-on threshold voltage of 4.73 V, a turn-off
threshold voltage of 3.67 V, and a regulated output voltage of
3.3 V. After the MSEH is triggered, the storage voltage rises
rapidly. Once it exceeds the turn-on threshold, the UVLO func-
tion activates and supplies a stable 3.3 V to a 5.8 GHz radar
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Figure 3. Performance evaluation of the mantis shrimp-inspired energy harvester

(A) Schematic illustration and magnetic field simulation of the mantis shrimp-inspired energy harvester (MSEH), showing the motion of the magnet array passing
through coils and the corresponding magnetic flux distribution.

(B) Measured and simulated voltage responses from six coils, confirming good agreement and illustrating the oscillatory nature of the output.

(C) Peak power output across a range of load resistances for each coil, revealing optimal load conditions.

(D) Force-displacement relationship (presented as mean + standard deviation) of the magnet array before energy release, depicting the potential energy loading
process and the critical displacement and force required to trigger latch off.

(E) Voltage charging profiles under different capacitor values (47 uF-1 mF), showing the energy storage dynamics of the system.

(F and G) Harvested energy and effective power across different capacitors.

(H) Charging time required to reach voltage saturation for different capacitors.

(I) Power generation performance of a single MSEH unit under human walking conditions with varying body weights, demonstrating slight variations in voltage,
power, and energy output (presented as + standard deviation) among participants. Video S2 demonstrates the capability of a single MSEH to power real-world
loads.

(J) Power generation performance of a four-unit MSEH system under vehicle loads at different speeds, showing slight fluctuations in voltage, power, and energy

output (presented as + standard deviation) across different vehicle speeds. VVideo S3 presents a real-world demonstration of using a four-unit MSEH system to
power external loads.
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Figure 4. Integration of the mantis shrimp-inspired energy harvester with an ultra-low power radar

(A) Radar characterization under two placement conditions. (i) Horizontal placement. (i) Elevated placement at 3 m, showing improved angular coverage.

(B) Working principle of the radar system. (i) No excitation or vehicle detected beyond 7 m—safe to proceed. (ii) A vehicle is detected within 7 m, triggering radar
and Bluetooth alerting.

(C) Timing diagram illustrating the system’s workflow: energy harvesting triggers radar activation, followed by object detection, Bluetooth alerting, a lock period,
and system reset for the next cycle.

(D) System components and real-world deployment. (i) Intelligent warning hub for user notifications. (i) Intelligent radar system. (jiij Power-generating floor
embedded with mantis shrimp-inspired energy harvester (MSEH) units. (iv—vi) Aerial photographs showing the system in action: stage | (excited), stage Il (ap-
proaching), and stage Il (safe to proceed). Video S4 shows the field test of the intelligent radar system.

(E) Circuit architecture of the integrated system, including the energy management unit (EMU), microcontroller unit (MCU), Bluetooth module, and radar sensor.
(F) Experimental results. (i) Voltage profiles of the energy storage unit (ESU), EMU, and MCU during vehicle passage, with dual excitations from the front and rear
axles. (i) Radar operating at rated voltage. (jii) Bluetooth transmission initiated after vehicle detection.
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Figure 5. Integration of the mantis shrimp-inspired energy harvester with an intelligent camera system

(A) Conceptual illustration of the upgraded intelligent camera system, which includes mantis shrimp-inspired energy harvester (MSEH) units, an image sensor, a
wireless transmission module, and a deep-learning-based recognition system.

(B) Real-world deployment, showing the installation of the camera module near visual blind spot obstacles and three different user interfaces: interface 1
(standby), interface 2 (vehicle detected), and interface 3 (pedestrian detected). Video S5 provides a demonstration of the intelligent camera system under field test
conditions.

(legend continued on next page)
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sensor (Magortek MG58F18), which remains idle until a target is
detected. Upon detection, the EMU outputs a PGOOD signal to
wake up the MCU (Nordic NRF52832) with integrated Bluetooth
Low Energy (BLE), which then broadcasts a warning message to
nearby devices via a mobile app. During the broadcasting pro-
cess, the electronic components consume relatively high power.
Once the stored energy is depleted and the capacitor voltage
drops below the defined UVLO threshold, the EMU cuts the
regulated output, thereby interrupting the power supply to pre-
vent unstable operation and protect the system. Nearby re-
ceivers, such as a mobile phone running a customized applica-
tion, receive the message and display the detection result and
alerts (e.g., green for “no detection” and red for “vehicle de-
tected”). The graphical user interface (GUI) of the mobile appli-
cation is shown on the right in Figure 4B, with zoomed-in views
provided in Figure S26.

Figure 4F presents the voltage and current characteristics of
the system over time, illustrating the energy storage, output sta-
bilization, and system activation process. The red curve repre-
sents the voltage across the energy storage unit (ESU), which ex-
hibits two distinct surges in response to excitations from the
vehicle’s front and rear axles. The orange curve represents the
stabilized output voltage from the EMU. The EMU voltage re-
mains at zero and rises to, then stabilizes at, 3.6 V once the
ESU voltage exceeds a critical threshold of 5.05 V. The light
blue curve indicates the output voltage of the radar sensor (rated
at 3.6 V), which is used as the MCU'’s input voltage. For most of
the time, the MCU voltage remains at zero, indicating no target
detection and, thus, no power consumption. Once a vehicle is
detected, the MCU is powered on and drives the BLE module
to broadcast warning messages with a time interval of 100 ms.
In Figure 4F-ii, the radar operates at its rated voltage, as indi-
cated by the orange curve, representing the stable supply
voltage from the EMU. Figure 4F-iii presents a detailed view of
the voltage dynamics during BLE transmission, showing periodic
drops due to the power consumption of the MCU. When the
MCU is activated, it draws power from this voltage source, re-
sulting in a noticeable voltage decline due to the lack of a stabi-
lization mechanism at the output pins of the radar sensor. Over-
all, Figure 4F illustrates the system’s dynamic power utilization.
Video S4 showcases the field test of this intelligent radar system.

Integration with an intelligent camera system

While the radar-based system performed well, it cannot distin-
guish between vehicles and pedestrians. To address this limita-
tion, an ultra-low-power camera system powered by MSEH units
is developed to enable intelligent object recognition and enhance
situational awareness in low-visibility areas. As shownin Figure 5A,

Device

the system integrates eight MSEH units embedded in a speed
bump, with four connected to the harvesting circuit and the re-
maining reserved as backups. Upon activation by passing vehi-
cles, the connected MSEH units generate electricity to power a
roadside ultra-low-power camera. The camera captures an image
of the approaching object and transmits it via BLE to an edge-pro-
cessing terminal. A deep learning model implemented on the ter-
minal processor classifies the object as either a vehicle or a pedes-
trian. If a vehicle is detected, a warning alert is broadcast to nearby
mobile devices via Wi-Fi or 5G, enabling real-time hazard alerts.

Figure 5B and Video S5 show the real-world deployment of the
system, including camera installation near visual blind spots
and the three user interface states: standby, vehicle detected,
and pedestrian detected. The system utilizes a pre-trained
ConvNeXt deep learning model (Figure 5C) for object recognition.
Figure 5D presents the deep learning model’s receiver operating
characteristic (ROC) curve, indicating high accuracy with a true
positive rate significantly above a random classification. As shown
in the confusion matrix (Figure 5E), the model achieved 100% ac-
curacy, correctly classifying all 40 vehicle and 30 pedestrian im-
ages. Video S6 further demonstrates the correct identification of
vehicles and pedestrians in real-world scenarios.

The camera system is designed for ultra-low-power operation
(Figure 5F), using the same EMU and MCU as for the radar sys-
tem. A CMOS image sensor connects to the MCU via an 8-bit
parallel data bus. The MCU operates at a 32 kHz clock rate to
minimize power consumption, and the camera captures images
at a lower 162 x 121 resolution, which reduces both processing
load and energy usage. Preliminary analysis shows that under a
steady 3.3 V power supply, the camera system consumes about
38.41 mJ per image capture and transmission cycle, as shown in
Figure S31. However, when powered by MSEHSs, the energy
requirement increases to ~60 mJ per cycle due to power conver-
sion losses, voltage fluctuations, and repeated initialization. Still,
given that four MSEH units generate over 90 mJ, the energy sup-
ply is more than sufficient.

Figure 5G illustrates the embedded system architecture and
workflow designed to achieve ultra-low-power operation. The sys-
tem is awakened by an energy input from the MSEH units, followed
by startup and initialization. Then, the MCU enters an ultra-low-po-
wer standby mode. GPIO ports are configured to activate system
functions. The system then follows two primary operational paths:
one dedicated to BLE communication and the other to image cap-
ture. The upper path manages BLE initialization, advertising, and
reliable data transmission. The lower path oversees image acqui-
sition, where the camera is activated to capture images, which are
first stored in ferroelectric RAM (FRAM) to conserve energy and
preserve data integrity. Once completed, the image data are

(C) Image recognition pipeline employing a ConvNeXt feature encoder for classifying captured scenes as either vehicles or pedestrians. VVideo S6 shows the

image content recognition process on the receiving terminal.

(D) Receiver operating characteristic (ROC) curve showing the classification performance of the model.
(E) Confusion matrix demonstrating high classification accuracy, with all 40 car images and all 30 human images correctly identified.
(F) Circuit architecture of the entire system, incorporating an energy management unit (EMU), a microcontroller unit (MCU), a camera module, and a wireless

communication module.

(G) Embedded system programming workflow demonstrating how ultra-low-power operation is achieved, including event-triggered image capture, memory

handling, and BLE communication.

(H) Experimental results from the field test, showing ESU voltage, EMU output voltage, and current consumption over time during a complete operating cycle.
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retrieved from FRAM and transferred to the RAM of the MCU,
which is prepared for transmission. This energy-efficient architec-
ture allows power-intensive tasks—such as image capture and
wireless transmission—to be executed only when necessary,
thereby minimizing overall energy consumption.

Figure 5H presents the results of a field test, revealing the
voltage and current dynamics of the system during operation
upon being triggered. The energy collection process, character-
ized by the two-stage increase in the ESU voltage curve, is
similar to that in Figure 4F. The ESU voltage first increases, fol-
lowed by a gradual decline, indicating continuous power con-
sumption. Once the ESU voltage rises above a predefined
threshold, the EMU begins supplying a stable output voltage.
Some initial current spikes—attributed to the MCU’s startup
behavior—are followed by pulsed activity between 2 and 6 s,
corresponding to the operation of the MCU, camera, and BLE
module. These field test results prove the feasibility and effec-
tiveness of integrating MSEH-powered intelligent camera sys-
tems for real-time, self-powered object recognition and hazard
alerting in transportation environments. Video S5 showcases
the field test of this intelligent camera system.

Conclusion

In this work, we presented the design of an MSEH that replicates
and enhances the biomechanics of the mantis shrimp’s strike for
high-efficiency energy conversion. By employing a latch-medi-
ated energy storage and release mechanism, the MSEH trans-
forms slow external forces into ultrafast motion and then into elec-
tricity, exhibiting remarkably higher power density than existing
designs. Performance characterization showed that the MSEH
generates a peak voltage of 60 V, with a maximum instantaneous
power output of 7.74 W. Under a single impulse excitation, a single
MSEH unit can generate up to 44.24 mJ energy when charging a
100 pF capacitor. To validate and showcase its practicality, we uti-
lized multiple MSEH units to develop a battery-free intelligent sur-
veillance system for enhancing safety in transportation, where
they successfully powered an ultra-low-power radar sensor and
a camera-based object recognition system. Our field tests
demonstrated that four MSEH units embedded in a speed
bump could provide sufficient energy (~180 mJ) to sustain the
operation of both the radar and the camera monitoring system
(~60 mJ). A smart terminal deployed with a pre-trained deep
learning model received the image from the camera system and
analyzed the content. The deep-learning-based image recogni-
tion model demonstrated a high classification accuracy, accu-
rately distinguishing 40 vehicles and 30 pedestrians. The intelli-
gent terminal then relayed real-time alerts to nearby users and
displayed them on mobile devices, enhancing safety in visually
obstructed scenarios. The findings in this work highlight the prom-
ising potential of bio-inspired kinetic energy harvesting as a scal-
able solution for energy-autonomous sensing and monitoring in
intelligent transportation contexts.

METHODS
FE simulation model

An FE model was developed for simulating the magnet array mo-
tion and the induced electrical potential in the coils. In ANSYS
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Maxwell, the “zero tangential H field” boundary condition was
adopted to control the magnetic field behavior. This condition
forces the magnetic field lines to remain perpendicular to the
boundary, effectively confining the field within specified domains
and simplifying computation by preventing field extension
beyond the boundary. It was applied to the outer boundaries of
the FE model to simulate a non-magnetic surrounding environ-
ment (e.g., air or vacuum), where no tangential magnetic field
is expected.

After comparison with the properties from suppliers, suitable
material models were chosen from the material library provided
in ANSYS Maxwell for simulation. The properties of copper (the
material of coils), including its relative permeability (0.99991)
and bulk conductivity (5.8 x 107 S/m), are standard values
commonly used for electromagnetic simulations. Neodymium
iron boron magnets were assigned typical properties, with a
relative permeability of 1.47 and a magnetic coercivity
of —730,000 A/m. The vacuum properties, featuring a relative
permeability of 1.0000004 and zero bulk conductivity, conform
to standard parameters for non-conductive electromagnetic
simulations. The software intelligently selects the appropriate
element types based on the simulation setup and the specific
analysis.

Prototyping and assembly

To fabricate the MSEH units, we employed 3D printing tech-
nology for rapid prototyping. Using a Bambu Lab X1E 3D
printer, we printed the structural components with high-
strength polymer materials (PAHT-CF), ensuring precise repli-
cation of the designed latch-mediated energy storage and
release mechanism. The printed components were post-pro-
cessed and assembled with other mechanical and electro-
magnetic elements, including the buffer springs, permanent
magnets (neodymium iron boron), and copper coils for energy
conversion. The self-locking and button latch mechanisms
were carefully integrated to mimic the biomechanical strike
mechanism of the mantis shrimp. Once assembled, the
MSEH units were tested for mechanical integrity and align-
ment to ensure their proper functionalities before experimental
evaluation.

Measurement and testing procedures

A series of tests was conducted under controlled conditions
to comprehensively evaluate the performance of the proto-
typed MSEH. The mechanical response of the MSEH was
characterized by applying single impulse excitations to acti-
vate the latch-mediated release mechanism, during which
the velocity and displacement of the magnet array were
measured using a high-speed camera (Photron Nova S16)
and a laser Doppler sensor (SOPTOP LV-S01). The electrical
performance was assessed by measuring the induced voltage
across the coils with a multi-channel oscilloscope (RIGOL
DHO 1104), a data acquisition system (NI DAQ card), and an
electrometer (Keithley 6517B) to ensure high accuracy. Addi-
tionally, the energy storage capability and conversion effi-
ciency of the system were evaluated by testing the charging
behavior of capacitors with different values (47 pF, 100 pF,
220 pF, 470 pF, and 1 mF).
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