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A B S T R A C T

Defective metamaterials offer significant potential for applications in filtering, sensing, waveguiding, and energy 
harvesting, owing to defect states capable of localizing vibrational energy. However, constraints from Bragg 
scattering typically restrict these states to high-frequency ranges, and they are sparse within a single bandgap. 
Conventional strategies that add multiple defects broaden the spectrum but suffer from inter-defect dispersion 
that weakens energy concentration. In this study, a novel defective rhombic metamaterial (DRM) is proposed to 
achieve multi-band low-frequency defect states from a single-point defect. The novelty rests on two mechanisms: 
(1) the rhombic geometry’s low effective stiffness significantly lowers the bandgap frequency without enlarging 
lattice size; and (2) the DRM supports higher-order defect states, enabling multiple localized modes to coexist 
within a single bandgap while maintaining strong localization. The band structures of the DRM are first analysed 
using finite element (FE) simulations, demonstrating the concept of low-frequency higher-order defect modes. 
Subsequently, the spectral element method (SEM) is employed to evaluate the transmittance characteristics, 
followed by parametric studies to explore the influence of geometric parameters on energy-localization behavior. 
Finally, the theoretical and numerical predictions are validated experimentally, providing the first experimental 
evidence of higher-order defect modes in the sub-kilohertz range. Overall, this work presents a promising 
strategy for broadband low-frequency energy localization using compact single-point-defect metamaterials, 
paving the way for higher power density in miniaturized energy harvesters and enhanced resolution in sensing 
applications.

1. Introduction

Phononic crystals (PnCs) and metamaterials have attracted wide
spread attention due to their exceptional ability to manipulate wave 
propagation through engineered periodic structures. A variety of unique 
wave phenomena have been extensively explored in these systems, 
including negative refraction [1–3], bandgap formation [4–6], topo
logical edge states [7–9], and non-reciprocal wave propagation [10–12]. 
Among these phenomena, defect states are of particular interest for their 
ability to localize energy. Defect states refer to localized vibrational 
modes induced by intentional disruptions of the periodicity in 
PnCs/metamaterials [13,14]. These states emerge within bandgaps, as 
the structural defect functions as an energy trap, capturing vibrational 
energy that would otherwise be attenuated. The resulting confinement 

leads to standing waves and a significant amplification of vibrational 
energy at the defect site. Although similar to structural resonances, 
defect states have been shown to achieve much stronger energy locali
zation [15–17]. As a result, defective PnCs and metamaterials have 
shown great potential in lots of applications, such as vibration filtering 
[18–21], sensing [22–25], waveguiding [26–29], and energy harvesting 
[30–34]. For instance, directional wave propagation was realized using 
line defects formed by removing scatterers [35]. Acoustic energy 
focusing with pressure amplification was achieved through 
Helmholtz-resonator-based defects [36], with transmission gains up to 
30.83 mV/Pa.

Despite these promising prospects, defect states in PnCs and meta
materials face two major limitations. First, they typically emerge at 
relatively high frequencies, usually above several kilohertz [37–39]. For 
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example, defect modes in the 20-60 kHz range have been reported in 
various scatterer-based PnC and metamaterial designs, such as those 
incorporating metallic cylindrical scatterers [40], embedded polygonal 
cavities [41], and structures with alternating sections of different ma
terials [42]. The high-frequency nature of these defect modes is pri
marily attributed to the Bragg scattering mechanism, which underlies 
Bragg bandgaps and is formed only when the lattice constant is com
parable to the wavelength [43]. Consequently, shifting defect modes to 
lower frequencies typically requires either impractically large structures 

or alternative design strategies. To target sub-kilohertz excitations 
commonly encountered in buildings, vehicles, and industrial machinery 
[44–46], locally resonant designs embed resonators in a metamaterial 
lattice and create defect sites by selectively removing resonators [16,
47]. This exploits subwavelength wave control to generate 
low-frequency defect states without increasing the unit-cell size, but the 
added resonator mass compromises suitability for lightweight 
applications.

Another challenge for defective PnCs and metamaterials is their 

Fig. 1. (a) Schematic of the DRM with infinite configuration. “PBC” denotes the Floquet-Bloch periodic boundary condition; (b) Infinitely perfect rhombic meta
material and the cross-section of the struts; (c) The effective stiffness of a rhombic unit with varying α and L1. α varies from 5◦ to 85◦, with L1 = 0.02/cos(α) to 
maintain a constant lattice constant d = 6 cm; (d) Band structure of the PRM. Blue curves with circular markers represent flexural modes, and purple curves with 
circular markers correspond to longitudinal modes. The flexural bandgaps are highlighted by blue-shaded regions; (e) Band structure of the PRM with modified L1 
and α; Mode shapes corresponding to the selected points (green dot) in (d) and (e) are shown in (f) and (g), respectively. F and L denote the flexural mode and 
longitudinal modes, respectively.
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narrow operational bandwidth, which limits effectiveness in broadband 
vibration environments and multi-band localization tasks. To address 
this, researchers have proposed several strategies that generally fall into 
three categories. The first approach is defect-mode splitting, where a 
single defect mode is split into multiple modes to broaden the opera
tional bandwidth. This can be realized by introducing dual structural 
defects [48–52] or by attaching a secondary resonator at the defect site 
[53]. However, arbitrarily adding defects does not necessarily produce 
additional defect states, and energy localization may weaken as defect 
sites compete. The second strategy is multi-bandgap defect engineering, 
in which defect states are independently created within distinct 
bandgaps. Examples include creating defect states separately in Bragg 
and locally resonant bandgaps [54], or in two locally resonant bandgaps 
governed by different mechanisms [55]. The third approach utilizes 
multiphysics coupling to realize reconfigurable defect states, thereby 
expanding the frequency coverage. This route typically involves smart 
materials such as piezoelectric [56–59] and magnetostrictive materials 
[60,61]. By applying external electric or magnetic fields, the effective 
stiffness of the defect structures can be actively tuned to control defect 
frequencies. In our recent work [62], we integrated multi-modal shunt 
resonant circuits into piezoelectric metamaterials to create “electrically 
controlled defects”, enabling arbitrary and decoupled multi-band wave 
localization. Thermal loading at defect sites can also modify local stiff
ness through the stress-stiffening effect, thereby altering defect-mode 
behavior [49,63,64]. However, the above active tuning methods 
require external energy, which limits their use in passive applications 
such as energy harvesting or autonomous sensing.

In this study, we propose a novel defective rhombic metamaterial 
(DRM) capable of generating multiple low-frequency defect states 
through a single-point defect within a compact lattice. This structure 
consists of a periodic rhombic-like truss made of slender beams, where 
the defect is introduced by locally modifying the dimensions of a con
necting beam. For ease of differentiation, the uniform-cell counterpart is 
termed the perfect rhombic metamaterial (PRM). Truss metamaterials 
have garnered considerable attention for their low-frequency bandgaps 
effect, largely attributed to their concave geometries [65,66]. Repre
sentative configurations include X-shaped [67,68], rhombic [69,70], 
pentagram [71,72], and hexagonal designs [73]. These structures 
combine high strength with low weight, ideal for load-bearing yet 
lightweight applications [74]. As the basic components of truss meta
materials, beams and rods have been extensively investigated for their 
mechanical behavior [75–77]. To capture the dynamics of truss periodic 
units, common modeling methods include the finite element method 
(FEM) [78], the transfer matrix method (TMM) [79], and the spectral 
element method (SEM) [69,80]. Among them, TMM may suffer nu
merical instability at high frequencies due to the successive multipli
cation of transfer matrices, particularly in systems with massive 
substructures [81]. FEM, while more stable, becomes computationally 
expensive as the structural scale increases [82,83]. In contrast, SEM 
improves stability and efficiency by constructing global matrices with a 
minimal number of degrees of freedom [84,85], making it especially 
suitable for analyzing complex periodic systems such as truss 
metamaterials.

Building on the low-frequency characteristics of truss metamaterials, 
this work embeds a single defect into a compact rhombic lattice to 
generate low-frequency defect states (here, “low-frequency” specifically 
refers to the sub-kilohertz range). This approach achieves low-frequency 
operation without resorting to large structures or significant added 
mass. To broaden the defect-mode frequency range, we pioneer the 
concept of higher-order defect states, defined as a sequence of distinct, 

spatially localized modes within a single Bragg bandgap, each tied to a 
successive eigenmode of the defect element. Unlike the conventional 
defect-mode splitting [48,49,52] or multi-bandgap defect approaches 
[54,55], which depend primarily on the fundamental resonance and 
require multiple defect sites, our approach exploits multiple 
higher-order modes at a single defect site to localize flexural waves in
side one bandgap. This mechanism substantially improves bandgap 
utilization while the single-point defect reduces structural design 
complexity. In what follows, we demonstrate the feasibility of exciting 
higher-order defect states via the defect’s higher-order flexural modes, 
validate the concept through modal analysis, and compare our design 
against existing multi-defect-mode architectures to highlight its 
simplicity and performance advantages.

This paper is organized as follows. Section 2 details the DRM design 
and analyzes its multiple low-frequency defect bands through band 
structure analysis. Section 3 introduces the dynamic model of the DRM 
based on the SEM. In Section 4, the multi-band low-frequency energy 
localization induced by defect states is systematically analyzed using 
both SEM and FE models. Section 5 experimentally validates the accu
racy of the theoretical and simulation results and confirms the formation 
of low-frequency higher-order defect states. Finally, Section 6 provides 
concluding remarks.

2. Design and mechanism of the defective rhombic 
metamaterials

This section presents a framework utilizing a rhombic-shaped truss 
structure to effectively lower and broaden the frequency range of defect 
states. Section 2.1 details the geometry of the proposed DRM. Section 
2.2 presents band structure analyses showing low-frequency bandgaps 
and defect modes, and demonstrates how higher-order defect state 
mechanisms increase defect-mode density to enable broadband wave 
localization in the sub-kilohertz regime.

2.1. System configuration

The proposed DRM structure comprises n unit cells arranged peri
odically, each featuring a rhombus-shaped substructure, as shown in 
Fig. 1(a). In the global coordinate system, each substructure consists of 
six uniform, isotropic elastic beams. The inclined beams forming the 
rhombus have length L1 and are oriented at an angle α with respect to 
the x-axis, while the horizontal connecting beams have length L2. All 
beam elements share identical cross-sectional dimensions, with width b 
and thickness h, as shown in Fig. 1(b). A structural defect is introduced 
by changing the length of one connecting beam to L3, which breaks the 
periodicity and disrupts the physical mechanism of bandgap formation. 
Such asymmetry induces localized defect modes inside the bandgap. By 
adjusting the defect geometry, the mode confined around the defect site 
can be tailored, allowing exploration of low-frequency and broadband 
wave localization behavior. In addition, Fig. 1(b) presents the PRM in its 
infinite configuration, used as a reference to verify the conditions for 
defect mode generation.

2.2. Defect-band analysis

This subsection investigates the defect-band properties of the DRM 
using band structure analysis. The relation between circular frequency ω 
and wavenumber q, commonly referred to as the band structure, is a 
fundamental tool for characterizing wave propagation in periodic sys
tems. To investigate the formation of defect states for different wave 

Table 1 
Material and geometric properties of the DRM and PRM.

L1(cm) L2(cm) L3(cm) α(◦) b(cm) h(cm) E(Gpa) ρ(kg/m3) ν

4 2 4 60 0.5 0.3 2.2e9 1100 0.394
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polarizations, their low-frequency properties, and mode-localization 
behavior in the proposed DRM, band structure analysis is conducted 
using COMSOL Multiphysics. Two periodically constrained configura
tions are considered: PRM (Case 1) and DRM (Case 2). For each case, the 
band structures of the above models are derived by computing the 
eigenfrequencies ω over a range of wavenumbers q. Material and geo
metric parameters are summarized in Table 1, where the lattice constant 
d is only 6 cm, consistent with the compact design described earlier.

In Case 1, Floquet-Bloch periodic boundary conditions are applied to 
the cross sections of the left and right ends of the rhombic unit cell, as 
illustrated in Fig. 1(b). The resulting band structure is presented in Fig. 1 
(d). Re(q*) denotes the real part of the dimensionless wavenumber q* =
qd/π. The blue and purple curves in Fig. 1(d) represent the flexural and 
longitudinal modes, respectively, and the corresponding mode shapes at 
selected points (green dots) are provided in Fig. 1(f). It can be observed 
that the PRM exhibits three flexural bandgaps (blue-shaded regions) in 
the frequency ranges of 241.8 Hz-646.1 Hz, 925.4 Hz-1615.5 Hz, and 
1712.9 Hz-2566.1 Hz, corresponding to the first-, second-, and third- 
order Bragg scattering mechanisms, respectively. A first-order longitu
dinal bandgap appears at a higher frequency range of 757.4-2061.6 Hz, 
reflecting the structure’s greater axial stiffness compared to its bending 
stiffness. Notably, the overlapping frequency region between the flex
ural and longitudinal bandgaps constitutes a complete (omnidirectional) 
bandgap [86], in which propagation of both flexural and longitudinal 
waves is suppressed.

It is important to note that the center frequency of the first-order 
flexural bandgap is relatively low, and significantly lower than that of 
conventional Bragg-type metamaterials with comparable lattice con
stants, which typically fall within the range of 20 kHz-60 kHz [40–42]. 
Such sub-kilohertz Bragg bandgaps have also been observed numerically 
and experimentally in other truss-type metamaterials employing similar 
polymeric materials and centimetre-scale lattice constants [65,80,87]. 
Actually, many studies have lowered Bragg-type bandgap frequencies 
through topology optimization [88,89], by adding concentrated masses 
to reduce eigenfrequencies [90], or by embedding of acoustic inclusions 
(e.g., sonic-black-hole structures) to reduce the unit-cell effective sound 
speed [91]. To explain the low-frequency Bragg bandgaps observed 
here, we invoke the Bragg scattering condition that governs bandgap 
formation, given by [92]: 

2d = Nλ(N=1, 2, ...), (1) 

where λ is the wavelength and N denotes the bandgap order. For flexural 
waves propagating in beam structures, by incorporating the relationship 
between wave velocity and frequency, the center frequency of the first- 
order flexural bandgap can be estimated as follows: 

fBragg ≈
1

2d2

̅̅̅̅̅̅̅̅̅
EIeff

ρA

√

, (2) 

where EIeff and ρA represent the effective stiffness and the mass density, 
respectively. Due to the rhombic geometry, the effective stiffness of the 
unit cell differs from that of a simple straight beam and can be tuned by 
L1 and α. According to Eq. (2), the bandgap center frequency varies with 
the effective stiffness EIeff when the lattice constant d and mass density 
ρA are held fixed. To illustrate this effect, L1 = 5.85 cm and α = 70◦ are 
selected, while keeping d = 6 cm. The resulting band structure in Fig. 1 
(e) shows a downward shift in the first flexural bandgap to the range of 
113.7 Hz-454.5 Hz. Corresponding mode shapes at selected points 
(green dots) are plotted in Fig. 1(g).

To quantify how L1 and α affect the effective stiffness, COMSOL 
simulations are conducted to estimate the flexural and longitudinal 
stiffness of a rhombic unit for a variety of geometries. In the Solid Me
chanics module, one end of the rhombic unit is fixed, while a unit force is 
applied either perpendicular or parallel to the connecting beam at the 
other end. A static study is used to evaluate the stiffness. The angle α 
varies from 5◦ to 85◦, and L1 is adjusted accordingly using L1 = 0.02/cos 
(α) to maintain a constant lattice constant d = 6 cm. As shown in Fig. 1 
(c), the flexural stiffness slightly increases at small α, then gradually 
decreases, whereas the longitudinal stiffness decreases consistently with 
increasing α. This behavior explains the lower bandgap frequencies 
observed in Fig. 1(e) for the identical lattice constant. In summary, these 
findings confirm that the rhombic metamaterial can sustain low- 
frequency bandgaps with compact lattice constants, thereby providing 
the foundation for the low-frequency defect modes explored in this 
study.

In Case 2, a supercell approach is employed to capture defect bands 
induced by the DRM. A supercell composed of six units is considered, 
where the connecting beam between the third and fourth cells is 
modified to L3 to introduce a defect, thereby breaking the translational 
symmetry along the beam direction. Floquet-Bloch boundary conditions 
are applied at the ends of the supercell, as illustrated in Fig. 1(a). Ma
terial and geometric parameters are used in Table 1, and the modified 
lattice constant is ds = 38 cm. The resulting band structure, shown in 

Fig. 2. (a) Band structure of the DRM. Blue curves with circular markers represent flexural modes, and purple curves with circular markers correspond to longi
tudinal modes. The flexural bandgaps are highlighted by blue-shaded regions. Three defect bands are shown as red curves with circular markers; (b) Mode shapes 
corresponding to the selected points (green dot) in (a).

Y. Jian et al.                                                                                                                                                                                                                                     International Journal of Mechanical Sciences 306 (2025) 110859 

4 



Fig. 2(a), contains significantly more dispersion branches than in Fig. 1 
(a). This increase arises from band folding introduced by the supercell 
configuration, which compresses the dispersion curves into a smaller 
Brillouin zone and thereby generates additional bands [93], while the 
bandgap ranges remain largely unchanged. Importantly, the change in 
L3 breaks the PRM’s translational symmetry and locally disrupts the 
mechanism responsible for bandgap formation. Consequently, pass
bands (i.e., defect bands) appear within each of the original multiple 
bandgaps, as indicated by the red curves marked with circles. These 
bands are nearly flat, meaning their slopes and thus their group veloc
ities are close to zero. At these frequencies, wave propagation is strongly 
suppressed, and energy becomes confined near the defect. As a result, 
standing-wave-like modes emerge at the defect site, leading to signifi
cantly amplified local vibration amplitudes.

To gain more insight into the defect state characteristics, Fig. 2(b)
presents mode shapes of representative defect states Da, Db, and Dc. 
From which the following observations are made: (1) wave localization 
and energy confinement are evident in Da-Dc, with vibrational energy 
concentrated around the spatial defect. In contrast, the reference flex
ural mode F exhibits a distributed energy profile. Such localization in
dicates potential for waveguiding, sensing, and narrow-band filtering 
applications; (2) these defect states originate from flexural coupling 
between the defective elements and the periodic host, as evidenced by 
their exclusive appearance within the flexural bandgaps (first- through 
third-order Bragg scattering). No defect modes occur in the longitudinal 
bandgap. Two factors explain the observed behavior. On the one hand, 
longitudinal (in-plane) waves couple weakly to the lattice periodicity 
and therefore tend to transmit rather than localize. On the other hand, 
beam theory predicts that changes in L3 affect axial stiffness far less than 
bending stiffness, and consequently, symmetry breaking induced by 
beam-length variation is weak for axial excitations; (3) the rhombic cell 
design supports low-frequency localization, with the defect state in the 
first-order flexural bandgap occurring at approximately 418.1 Hz when 
q* = 1. Beyond the above findings, the modal shapes of Da-Dc reveal 
distinct energy localization patterns. Specifically, the Da mode exhibits a 
dipole-like localization pattern [94], with peak strain 
odd-symmetrically distributed on both sides of the defect center and in 
opposite phases. In contrast, Db and Dc modes show monopole-like 
distributions [95], characterized by a single strain maximum at the 
defect center. This variation implies that, for applications such as energy 
harvesting or sensing, the placement of transduction elements should be 
tailored to the mode shape to avoid phase cancellation and ensure 
optimal performance.

It should be noted that wave propagation within a defect band 
typically exhibits near-zero group velocity, resulting in sharp, narrow
band frequency responses that limit practical use. Although the multiple 
defect states shown in Fig. 2(a) expand the localization bandwidth, they 
lie in separate bandgaps and only the first occurs at relatively low fre
quencies. Broadband localization is ideally achieved by introducing 
multiple defect states within the first-order bandgap. To this end, Fig. 3 
(a) presents the band structure of the DRM for L3 = 14 cm, with all other 
parameters listed in Table 1. For clarity, we focus on the characteristics 
of the defect states within the first-order flexural bandgap. Two defect 
bands, denoted by red curves with circular markers, emerge at 301.6 Hz 
and 588.3 Hz. The selected mode shapes, labeled as D1 and D2, are 
shown in Fig. 3(b), clearly indicating energy confinement around the 
defective beam. Interestingly, the energy concentration regions in D1 
and D2 resemble the first- and second-order flexural modes of a 
clamped-clamped beam, respectively. To further verify this correspon
dence, Fig. 3(c) presents FE eigenmode calculations for a beam under 
clamped-clamped boundary conditions with the same material and 
geometric parameters as the defective beam in Fig. 3(b). It can be seen 
that the clamped-clamped beam’s first and second flexural mode shapes 
closely match the localized energy-concentration patterns observed at 
the defect site in the DRM.

Based on this observation, we hypothesize that the formation of 
defect states is influenced not only by the coupling between the defect 
and the periodic host (i.e., as illustrated in Fig. 2(a)), but also by the 
defect’s intrinsic dynamics. The appearance of multiple defect bands in 
Fig. 3(a) can be attributed to the following mechanism: as the length of 
the defective beam L3 increases, its flexural eigenfrequencies shift 
downward and become more closely spaced. When one or more of these 
eigenfrequencies fall inside the bandgap, they cannot couple to propa
gating Bloch modes and therefore localize around the defect. Accord
ingly, we identify the defect states shown in D1 and D2 as the higher- 
order defect states. It is important to emphasize that, in terms of for
mation mechanism and structural design, these higher-order defect 
states differ fundamentally from existing dual-defect or multi-bandgap 
defect designs. Specifically: (1) In dual-defect designs [48,49,52], 
coupling between the two defects splits originally coincident resonances 
into two distinct frequencies. Multi-bandgap defect designs, on the other 
hand, generate defect states by creating separate bandgaps through 
distinct mechanisms, each supporting a single defect mode. For 
example, [55] employs the mechanical and acoustic resonances of 
Helmholtz resonators to produce defect modes in two distinct bandgaps. 
However, these approaches still primarily rely on the defect’s first-order 

Fig. 3. (a) Band structure of the DRM with higher-order defect states. Blue curves with circular markers represent flexural modes, while purple curves with circular 
markers correspond to longitudinal modes. Higher-order defect bands are shown as red curves with circular markers; (b) Mode shapes corresponding to the selected 
points (green dot) in the band structure; (c) Reference first- and second-order flexural modes of a clamped-clamped beam computed by FE.
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modes. (2) To achieve multiple defect states, the aforementioned 
methods require introducing two or more defects into the periodic 
structure. In contrast, the design in this work leverages the higher-order 
defect state mechanism, enabling a single defect to produce multiple 
defect states within a single bandgap, thereby significantly enhancing 
design flexibility.

In summary, the preceding band structure analysis highlights the 
proposed DRM’s advantage in achieving broadband low-frequency 
defect states. However, because dispersion analysis based on the 
finite-element method is computationally expensive and less effective at 
capturing the frequency-response characteristics of localized defect 
states, a dynamic model of a finite-length DRM is proposed in the 
following section.

3. Spectral element method

This section develops a dynamic model of the proposed DRM using 
the spectral element method (SEM). SEM ensures high accuracy while 
offering greater computational efficiency by reducing the number of 
element nodes. The elemental dynamic stiffness for the beam-like unit is 
derived, and the procedure for assembling the DRM’s global dynamic 
matrix is introduced.

3.1. Derivation of the dynamic stiffness matrix

The analysis is conducted under the assumption of small elastic de
flections [96,97], meaning that transverse displacements are much 
smaller than the beam length and axial strains remain within the linear 
elastic range. Under these conditions, geometric nonlinearities such as 

Fig. 4. (a) Spectral beam element in the local coordinate system; (b) Transformation from the local coordinate system x1-y1 to the global coordinate system xg-yg for 
the upper left and lower right beam elements; (c) Transformation from the local coordinate system x2-y2 to the global coordinate system xg-yg for the lower left and 
upper right beam elements; (d) Assembly procedure of the global dynamic stiffness matrix SDRM(ω) in the DRM.
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stretching-induced bending and mid-plane stretching can be neglected, 
allowing transverse and axial vibrations to be treated as uncoupled. 
Consequently, the partial differential equation governing the motion of 
the beam element can be expressed as follows [69]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρA
∂2w(x, t)

∂t2 + κGA
[

∂ϕ(x, t)
∂x

−
∂2w(x, t)

∂x2

]

= 0

ρI
∂2ϕ(x, t)

∂t2 + κGA
[

ϕ(x, t) −
∂w(x, t)

∂x

]

− EI
∂2ϕ(x, t)

∂x2 = 0

ρA
∂2u(x, t)

∂t2 − EA
∂2u(x, t)

∂x2 = 0,

. (3) 

where w(x,t), ϕ(x, t)and u(x,t) represent the transverse, rotational, and 
longitudinal displacements, respectively. E and G are the Young’s 
modulus and shear modulus, respectively, which are related by G =
E /[2(1 + υ)], where υ is the Poisson’s ratio. ρ denotes the mass density, 
A = b×h is the cross-sectional area, and I is the area moment of inertia. 
κis the shear correction factor depending on the shape of the cross- 
section. Considering the DRM structure under harmonic excitation, the 
steady-state displacement solution in Eq. (3) can be expressed as: 
⎧
⎨

⎩

w(x, t) = W(x)eiωt

ϕ(x, t) = Φ(x)eiωt

u(x, t) = U(x)eiωt .

(4) 

By substituting Eq. (4) into Eq. (3) and eliminating the time- 
harmonic dependence eiωt, the motion equation in the frequency 
domain is obtained as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ω2ρAW(x) + κGA

(
dΦ(x)

dx
−

d2W(x)
dx2

)

= 0

− ω2ρIΦ(x) + κGA
[

Φ(x) −
dW(x)

dx

]

− EI
d2Φ(x)

∂x2 = 0

− ω2ρAU(x) − EA
d2U(x)

dx2 = 0.

(5) 

Assuming the general solution to Eq. (5) is: 

⎧
⎨

⎩

W(x) = Aeikx

Φ(x) = rAeikx

U(x) = Aeikx,

(6) 

where A, r, and A are to-be-determined coefficients depending on the 
nodal displacements. By substituting Eq. (6) into Eq. (5) and solving the 
eigenvalue problem, the general solution in Eq. (6) can be rewritten as: 
⎧
⎨

⎩

W(x) = A1e− ik1x + A2eik1x + A4e− ik2x + A5eik2x

Φ(x) = r1A1e− ik1x − r1A2eik1x + r2A4e− ik2x − r2A5eik2x

U(x) = A3e− ik3x + A6eik3x,

(7) 

where rp = − i
(

k2
p −

ω2ρ
κG

)

/kp, p = 1 or 2, and the wavenumber k1, k2, 

and k3 are expressed as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
F +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2k4
F + 4

(
1 − η1k4

G
)√√

k2 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
F −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2k4
F + 4

(
1 − η1k4

G
)√√

k3 = ω
̅̅̅
ρ
E

√

,

(8) 

where kF =

(
ω2ρA

EI

)1
4
, kG =

(
ω2ρ
κG

)1
4
, η = I

A + EI
κGA and η1 = I

A. By 

substituting the nodal coordinates [W1Φ1U1W2Φ2U2] into Eq. (7), the 
nodal displacements can be determined as: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

W(0)
Φ(0)
U(0)
W(L)
Φ(L)
U(L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅ ⏟
d

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 1 0
r1 − r1 0 r2 − r2 0
0 0 1 0 0 1

e− ik1L eik1L 0 e− ik2L eik2L 0
r1e− ik1L − r1eik1L 0 r2e− ik2L − r2eik2L 0

0 0 e− ik3L 0 0 eik3L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
R

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
A2
A3
A4
A5
A6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅⏞⏞̅̅̅⏟
A

. (9) 

Note that the transverse shear force, bending moment, and longitu
dinal force are distributed along the beam element in the following 
forms: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fy = κGA
[
dW(x)

dx
− Φ(x)

]

Mz = EI
dΦ(x)

dx

Fx = EA
dU(x)

dx
.

(10) 

In other words, the nodal forces of a beam element can be expressed 
in terms of its nodal displacements. As illustrated in Fig. 4(a), nodes 1 
and 2 correspond to the left and right ends, respectively. The subscripts 
x, y, and z denote the coordinate axes associated with the corresponding 

nodal forces. Substituting the nodal forces
[
F1

y M1
z F1

xF2
y M2

z F2
x

]
into Eq. (7)

yields:  

Combining Eqs. (9) and (11) allows the representation of nodal force 
and moment in terms of the nodal displacements as: 

f = HR− 1d. (12) 

The frequency-dependent dynamic stiffness matrix of the beam 
element is given as SB(ω) = HR− 1.

3.2. Assembly of the dynamic stiffness matrix

In this subsection, the assembly of the global dynamic stiffness ma
trix for the DRM structure is described, from which its dynamic char
acteristics are obtained. It is important to note that SB(ω) is derived from 
the local coordinate system and must first be transformed into the global 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Fy(0)
− Mz(0)
− Fx(0)
Fy(L)
Mz(L)
Fx(L)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
f

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− κGA(− ik1 − r1) − κGA(ik1 + r1) 0 − κGA(− ik2 − r2) − κGA(− ik2 + r2) 0
iEIr1k1 iEIr1k1 0 iEIr2k2 iEIr2k2 0

0 0 iEAk3 0 0 − iEAk3
κGA(− ik1 − r1)e− ik1L κGA(ik1 + r1)eik1L 0 κGA(− ik2 − r2)e− ik2L κGA(ik2 + r2)eik2L 0

− iEIr1k1e− ik1L − iEIr1k1eik1L 0 − iEIr2k2e− ik2L − iEIr2k2eik2L 0
0 0 − iEAk3e− ik3L 0 0 iEAk3eik3L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
H

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
A2
A3
A4
A5
A6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅⏞⏞̅̅̅⏟
A

. (11) 
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coordinate system to construct the stiffness matrix of the rhombus- 
shaped substructure. The relationship between the two beam elements 
forming the upper left and lower right sides of the rhombus substructure 
and the global coordinate system is illustrated in Fig. 4(b). Based on 
geometric relations, SB(ω) in the x1-y1 coordinate system undergoes the 
following transformation to obtain its global counterpart Sg

1(ω): 

Sg
1(ω) = TT

1SB(ω)T1, (13) 

where T1 is the transformation matrix, expressed as: 

T1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(α) 0 sin(α) 0 0 0
0 1 0 0 0 0

− sin(α) 0 cos(α) 0 0 0
0 0 0 cos(α) 0 sin(α)
0 0 0 0 1 0
0 0 0 − sin(α) 0 cos(α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14) 

Similarly, for the beam elements located at the lower left and upper 
right sides of the rhombus substructure, their coordinate system re
lationships are illustrated in Fig. 4(c). SB(ω) in the x2-y2 coordinate 
system transforms: 

Sg
2(ω) = TT

2SB(ω)T2, (15) 

where T2 is the transformation matrix, given as follows: 

T2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(α) 0 − sin(α) 0 0 0
0 1 0 0 0 0

sin(α) 0 cos(α) 0 0 0
0 0 0 cos(α) 0 − sin(α)
0 0 0 0 1 0
0 0 0 sin(α) 0 cos(α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16) 

For beam elements aligned with (xg-yg), no coordinate trans
formation is required. Subsequently, the global stiffness matrix SDRM(ω)

of the DRM can then be assembled based on the finite element assembly 
procedure, which is graphically illustrated in Fig. 4(d). A representative 
rhombus-shaped substructure, consisting of six nodes labeled 1 through 
6, is selected for demonstration. The four inclined beams, denoted by the 
superscripts ur, ul, ll, and lr, and oriented toward the four diagonal di
rections of the rhombus center, are modeled using Eqs. (13) and (15). 
The superscript h indicates connecting beams. Based on the nodal con
nectivity in Fig. 4(d), the stiffness matrix of the rhombus-shaped sub
structure can be assembled. By further considering periodicity, SDRM(ω)

can be obtained.
In this study, a cantilever boundary condition is applied, where the 

left end of the DRM is clamped to a fixture and subjected to a unit force, 
while the right end remains free. Under this configuration, both rota
tional and longitudinal displacements at the clamped end are con
strained to zero. The governing equation for the finite-length DRM is 
given as: 

Fig. 5. (a) Transmittance of the PRM under flexural vibration; (b) Transmittance of the PRM under longitudinal vibration; (c) Transmittance of the DRM with L3 = 4 
cm under flexural vibration; (d) Transmittance of the DRM with L3 = 14 cm under flexural vibration. In all cases, results are compared among SEM, fine mesh, and 
coarse mesh FE simulations.
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SDRM(ω)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Wl

Φl = 0
Ul = 0

⋮

Wr

Φr

Ur

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0
0

⋮
0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17) 

where the superscripts l and r refer to the nodes located at the leftmost 
and rightmost ends of the structure, respectively. Given that Φl = 0 and 
Ul = 0, the second and third rows and columns of SDRM(ω)can be elim
inated, as shown in Fig. 4(d). The reduced system can then be solved to 
obtain the nodal displacements. The transmittance response τ of the 
DRM structure in the yg direction is determined as: 

τ = 20log10(|W(x) /W(0)|). (18) 

4. Characteristic analysis of defect states

This section begins with validation of the SEM model against finite 
element (FE) simulations. Subsequently, a parametric analysis is con
ducted to investigate how geometric parameters influence the low- 
frequency and broadband defect state characteristics of the DRM.

4.1. Validation of the SEM

In this subsection, validation of the previously developed SEM model 
is carried out using COMSOL 6.1, where the Timoshenko Beam interface 
is employed to simulate the rhombic-shaped truss structure. This inter
face accounts for shear deformation and rotary inertia, making it suit
able for dynamic analyses of thick beams. For the finite-length structure, 
six unit cells are modeled, which satisfies the minimum requirement for 
bandgap formation [98]. Both the PRM and the DRM structures, corre
sponding to Case 1 and Case 2 in Section 2, are considered, with geo
metric and material parameters consistent with those in Table 1. The 
finite-length metamaterial is subjected to clamped-free boundary con
ditions. A time-harmonic force Fy = Fx = F0eiωt is exerted at one end to 

Fig. 6. (a) Heatmap of the DRM’s transmittance versus α (10◦-80◦), with defect‑state peak marked by red dots; (b) Transmittance curves for slices A, B, and C in (a), 
with defect‑state peaks highlighted by red pentagrams; (c) Mode shapes at the defect‑state peak frequency for cases A, B and C, with the total DRM length L indicated; 
(d) The variation of the normalized vibration amplitude of the defective beam at the defect-state frequency with changing α.
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excite flexural or longitudinal vibrations, and the displacement at the 
opposite end is recorded to compute the transmittance τ.

Fig. 5(a) and (b) present the transmittances of the PRM structure 
under Fy and Fx excitation, respectively, as obtained by the SEM and FE. 
In the FE results, both fine-mesh (112 elements) and coarse-mesh (57 
elements) configurations are compared. The shaded regions in blue and 
pink indicate the flexural and longitudinal bandgaps, respectively. As 
shown in Fig. 5(a), the SEM predictions highly agree with the finely 
meshed FE results below 2000 Hz. By contrast, the coarse-mesh FE re
sults deviate significantly from fine-mesh ones beyond the second-order 
Bragg bandgap, indicating reduced accuracy. This underscores the effi
ciency of SEM, which achieves high precision with fewer elements and 
degrees of freedom, thereby improving computational efficiency. 
However, discrepancies between SEM and finely meshed FE become 
more pronounced at higher frequencies. This behavior stems primarily 
from the breakdown of the long-wavelength approximation as the 
wavelength becomes comparable to the beam cross-section. In addition, 
localized three-dimensional deformation at joints and connections (for 
example, sectional warping, torsion-bending coupling, and local rota
tional inertia) becomes significant at higher frequencies but is not 
captured by Timoshenko beam models. Therefore, in this study, the 

SEM’s predictive accuracy for the DRM is effectively limited to 2000 Hz. 
For frequencies above this threshold, finely meshed FE analysis is rec
ommended, with element sizes on the order of one-eighth of the shortest 
target wavelength, and additional local refinement at joints to ensure 
adequate resolution of the smallest geometric features.

Furthermore, Fig. 5(c) and (d) present the dynamic response of the 
DRM structure with L3 = 4 cm and L3 = 14 cm, respectively. In Fig. 5(c), 
three distinct peaks, marked with pentagrams and labeled Da, Db, and 
Dc, emerge within the first three flexural bandgaps. These peaks corre
spond to defect states and align with the defect bands observed in Fig. 2 
(a). In Fig. 5(d), the elongated defective beam results in two defect state 
peaks, D1 and D2, within the first-order flexural bandgap, representing 
higher-order defect states, respectively. These results are consistent with 
those shown in Fig. 3(a).

Subsequently, we investigate the influence of three principal geo
metric parameters on the bandgap and defect-state characteristics of the 
DRM structure: the rhombic internal angle (α), the length of the con
necting beam (L2), and the defective beam (L3). Specifically, the analysis 
focuses on how variations in these parameters affect the bandgap’s 
center frequency and bandwidth, as well as the frequencies and number 
of defect states.

Fig. 7. (a) Heatmap of the DRM’s transmittance versus L2 (0.5 cm-9.5 cm), with defect‑state peak marked by red dots; (b) Transmittance curves for slices A, B, and C 
in (a), with defect‑state peaks highlighted by red pentagrams; (c) Mode shapes at the defect‑state peak frequency for cases A, B and C, with the total DRM length L 
indicated; (d) Variation of the normalized vibration amplitude of the defective beam at the defect-state frequency with changing L2.
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4.2. Effect of rhombic internal angle

Variations in the rhombic internal angle α substantially alter the 
lattice constant of the DRM structure, necessitating a systematic inves
tigation of its dynamic response. Fig. 6(a) presents a heatmap of the 
DRM structure’s transmittance as α varies from 10◦ to 80◦. The blue 
shading denotes the bandgap, while the yellow contours trace the 
transmission peaks, with contours located inside the bandgap repre
senting defect states. By analyzing mode shapes from FE simulations, we 
pinpointed the segments of these contours exhibiting vibrational local
ization and marked them with red dots. It can be seen that as α increases, 
the defect-state frequency first rises slightly and then gradually de
creases, although the total variation remains small. To show more de
tails, three representative cases are selected: A (α = 20◦), B (α = 50◦), 
and C (α = 75◦), as indicated by pink dashed lines in Fig. 6(a). Their 
corresponding transmittance are shown in Fig. 6(b), where the bandgap 
is shaded light blue, and defect-state peaks are denoted by red penta
grams. The associated mode shapes at each defect-state frequency are 
plotted in Fig. 6(c), clearly illustrating energy localization in the DRM. 
Two main observations can be drawn: (1) Increasing α shifts the 
bandgap toward higher frequencies, in agreement with Bragg scattering 
in an enlarged unit cell. Remarkably, the overall structure length at α =
75◦ is less than half that at α = 20◦, yet the lower band-edge frequency 
increases only marginally (from 162 Hz to 212.3 Hz). Moreover, the first 
and second Bragg bandgaps merge at large α (e.g., α = 75◦), producing a 
broader attenuation region. This suggests that large α enables compact 
designs to achieve wide, low-frequency vibration suppression; (2)
although defect-state frequencies remain clustered near 400 Hz across 
all α, the defective beam’s displacement amplitude diminishes as α 
grows. To quantify this, we calculate the displacement amplitude of the 

defective beam at the defect-state frequency ωdefect and normalize it to 
the result for α = 20◦. As shown in Fig. 6(d), the normalized displace
ment amplitude declines modestly up to α = 60◦ (e.g., to 0.82) and then 
falls more sharply at larger angles (e.g., to 0.27 at α = 75◦). This trend 
implies that excessively large α values can weaken energy localization 
and hinder defect-state excitation. To give a practical threshold of α, a 
standard engineering criterion is applied. For transduction/sensing ap
plications, the harvested or detected power scales approximately with 
the square of the displacement amplitude. Thus, the -3 dB point 
(amplitude = 0.707×reference, i.e. 50% power loss) marks a practical 
performance threshold. Taking the defective beam’s peak displacement 
at α = 20◦ as the reference, the threshold αth is defined as: 

Adef(αth)

Adef(20∘)
= 0.707, (19) 

where Adef(αth) is the defective beam’s displacement amplitude evalu
ated at ωdefect and numerical evaluation yields αth = 67.4◦. For DRMs 
with different geometric or material parameters, the precise threshold 
αth can be computed from Eq. (19).

4.3. Effect of connecting beam length

In this subsection, the variation of the DRM’s system characteristics 
with the connecting-beam length L2 is examined. All other parameters 
remain as in Table 1. Fig. 7(a) presents a heatmap of the transmittance 
versus L2, where the first, second, and third Bragg bandgaps (shaded 
blue) are labeled I, II, and III, respectively. It can be seen that as L2 in
creases, each bandgap shifts toward lower frequencies due to the 
enlarged lattice constant. Meanwhile, the bandgaps become narrower, 

Fig. 8. (a) Heatmap of the DRM’s transmittance versus L3 (3 cm-23 cm), with the higher-order defect‑state peaks marked by red dots, white triangles, orange forks, 
and blue squares; (b) Transmittance curves for slices A, B, and C in (a), with higher-order defect modes highlighted by red, white, orange and blue pentagrams; (c) 
Mode shapes at the defect‑state peak frequency for cases A, B and C.
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with a reduced vibration-attenuation strength (the blue shading lightens 
with L2). For example, the first-order flexural bandgap shrinks from 
approximately 276.1 Hz-1282.6 Hz at L2 = 0.5 cm to around 125.1 Hz- 
174 Hz at L2 = 5.5 cm. The red-dotted regions mark the frequency ranges 
in which defect modes can emerge. Within both the first and second 
band gaps, the defect-state frequencies decrease slightly with L2. 
Notably, for 3 cm < L₂ < 4.5 cm, the defect states vanish because L2 
approaches the defective beam length L3 (= 4 cm).

To examine these behaviors in detail, we extract three representative 
slices (A, B, and C) from Fig. 7(a) and plot their transmittance curves in 
Fig. 7(b). The plots clearly show that the first-order flexural bandgap 
progressively narrows, shifts to lower frequencies, and eventually dis
appears with increasing L2. To understand how defect-mode localization 
evolves across different bandgap orders, Fig. 7(c) depicts the mode 
shapes corresponding to the three defect peaks in Fig. 7(b). In all cases, 
energy localizes around the defective beam in a dipole-like pattern, 
indicating that bandgap order does not alter the fundamental localiza
tion mechanisms. However, the intensity of localization differs among 
cases A-C. Fig. 7(d) quantifies this by comparing the normalized vibra
tion amplitude of the defective beam (normalized to its amplitude at L2 
= 0.2 cm) at the defect-state frequency for varying L2. It is observed that, 
for all bandgap orders, the defective-beam amplitude first rises and then 
falls as L2 increases. Combining the results in Fig. 7(a), it is evident that 
energy localization diminishes as the defect-state frequency approaches 

the bandgap edges and intensifies when the frequency lies near the 
bandgap center. In addition, when the defect states fall into the second- 
order flexural bandgap, the corresponding mode shape reverses its 
phase. Therefore, to achieve optimal energy confinement, L2 must be 
carefully tuned relative to the overall structure dimensions.

4.4. Effect of defective beam length

To explore how the defective beam length L3 shapes system behavior, 
Fig. 8(a) shows a transmittance heatmap with varying L3. All other pa
rameters remain as in Table 1. The blue shaded area denotes the first- 
order flexural bandgap. It is seen that the bandgap’s location and 
width remain essentially unchanged as L3 varies. However, increasing L3 
gives rise to multiple, periodically spaced transmission peaks within the 
bandgap, corresponding to higher-order localized modes.

To distinguish, these mode branches are highlighted by red circles, 
white triangles, orange forks, and blue squares, respectively, which trace 
the continuous frequency ranges of the respective defect states. It can be 
seen that as L3 increases, all four branches shift significantly toward 
lower-frequency regions, reflecting the reduction in effective stiffness 
associated with the longer defective beam. These tuning ranges span 
almost the entire bandgap and terminate near its boundaries. Properly 
designed bandgap region and defective beam length are expected to 
produce more low-frequency defect states.

Fig. 9. Variation of the normalized vibration amplitude of the defective beam at the defect-state frequency with changing L3: (a) First-order defect-state; (b) Second- 
order defect-state; (c) Third-order defect-state; (d) Fourth-order defect-state.
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Moreover, the appearance of multiple marker sequences along the x- 
axis suggests that several defect states coexist within a single bandgap. 
To further illustrate this, Fig. 8(b) shows the transmittances extracted at 
slices A, B, and C from Fig. 8(a), with colored pentagrams marking the 
defect-state peaks. Cases A and B in Fig. 8(b) exhibit two peaks at (173.5, 
507.3) Hz and (264.1, 513.2) Hz, respectively, while Case C shows three 
peaks at (174.5, 356.4, 607.4) Hz. The corresponding mode shapes 
shown in Fig. 8(b) are hereafter referred to as the first- through fourth- 
order defect states. Notably, the mode shape associated with the red 
pentagram in Fig. 8(b) is consistent with the dipole-like pattern analyzed 
in Section 2. As L3 increases, the mode shapes of the defective beam 
resemble those of a clamped-clamped beam. This occurs because 
lengthening the beam reduces its natural frequencies and compresses 
their frequency spacing. When these eigenfrequencies fall within the 
bandgap, they become trapped and excited as higher-order defect states. 
For example, at L3 = 19.5 cm, the eigenfrequencies are densely packed, 
allowing the formation of three distinct defect states.

Next, the influence of L3 on the vibration amplitudes of the four 
defect states shown in Fig. 9 is investigated. Based on the SEM, the mode 
shapes of the defective beam at each defect-state frequency are obtained 
and normalized with respect to the amplitude at L3 = 3.5 cm. It is clear 
that as L3 increases, the vibration amplitudes of the defective beam at 
the first- through fourth-order defect-state frequencies initially decrease 
and then increase, accompanied by a 180◦ phase reversal. This behavior 
suggests that the vibrational localization effect can differ significantly 
among defect states of different orders for a fixed L3, and that careful 
parameter selection is essential for achieving the desired localization 
characteristics.

Building on these insights, a general approach is summarized for 
engineering broad, low-frequency defect states. First, tailor the geome
try of the rhombic metamaterial to reduce its effective stiffness, thereby 
lowering the bandgap frequency at a fixed lattice constant; and second, 
engineer the defective element to produce densely clustered natural 
frequencies, which promotes the formation of multiple localized modes 
within the low-frequency bandgap via the higher-order defect state 
mechanism. It should be noted that this mechanism is not confined to 
the first flexural bandgap but can be readily extended to the higher- 
order Bragg bandgaps. However, as higher-order bandgaps occur at 
higher frequencies and lie beyond the low-frequency objective of this 
study, detailed analyses are omitted.

5. Experimental validation

In this section, the fabrication of physical prototypes, the experi
mental measurement procedures, and the subsequent comparison with 
theoretical and numerical results are presented to validate the wide low- 
frequency defect state effects.

Three prototypes corresponding to the PRM and DRM structures are 
fabricated using 3D printing. Their geometric parameters are listed in 
Table 2. The prototypes are printed using Esun PLA (E = 3.2 GPa, ρ =
1000 kg/m3, ν = 0.41). The experimental setup is illustrated in Fig. 10 
(a). Each prototype is mounted vertically, with one end rigidly fixed to 
the shaker fixture to provide a clamped boundary condition, while the 
other end left free. A frequency-swept harmonic excitation is generated 
by a vibration controller (VibrationResearch, model: VR9500), ampli
fied via a power amplifier (SignalForce, model: PA30E), and transmitted 
to a permanent magnet shaker (Labworks, model: ET-132-2). The 
resulting force, applied perpendicular to the surface of the metamaterial, 
has a constant acceleration amplitude of 0.5 G and a sweep rate of 60 Hz 
per minute, thereby exciting its flexural modes. The input signal is 
regulated by the VibrationVIEW 2021 software, while the data are 
recorded by the vibration controller. Two high-performance miniature 
ceramic accelerometers (PCB piezotronics, model: 352C23) are mounted 
at the clamped and free ends using wax. Before use, the accelerometers 
are calibrated using a reference standard accelerometer, and their sen
sitivities are determined to be 4.9 mV/g and 5.4 mV/g, respectively. 
With an extremely low mass of only 0.2 grams, these accelerometers 
impose minimal mass loading on the structure. To quantify the impact of 
the sensor-induced tip mass, Fig. 10(b) shows the DRM transmittance 
when a 0.2 g point mass is at the free end (structural and material pa
rameters as in Fig. 5(c)). Compared with the mass-free counterpart, the 
added tip mass has a negligible effect on the DRM’s dynamic response 
below 1500 Hz and produces slight downward shifts of the mode fre
quencies at higher frequencies. Thus, the sensor mass is deemed negli
gible for our sub-kilohertz defect-state analysis.

The measured transmittance of the PRM, designated as Prototype 1 
(Fig. 11(a)), is presented in Fig. 11(b). For comparison, theoretical and 
numerical predictions from the SEM and FE models are included, with 
the bandgap regions shaded in blue. The experimental results show good 
agreement with the predictions in the first-order Bragg bandgap. How
ever, the second-order bandgap obtained experimentally is narrower 
than expected, primarily due to more pronounced damping effects at 
higher frequencies and the greater influence of imperfect clamped 
boundary conditions on wave interference and diffraction. In addition, 
an unexpected transmission peak is observed at 661 Hz within the first 
bandgap, as indicated by the red dotted circle in Fig. 11(b). To verify 
that this is not related to a defect mode, acceleration responses are 
measured at three locations along the PRM under harmonic excitation at 
661 Hz. Fig. 11(c) shows the sensor layout, with three accelerometers 

Table 2 
Geometric properties of the prototypes.

Prototype L1(cm) L2(cm) L3(cm) α(◦) b(cm) h(cm)

1 4 2 2 60 0.5 0.3
2 4 2 4 60 0.5 0.3
3 4 1 15 30 0.5 0.3

Fig. 10. (a) Experimental setup; (b) Comparison of transmittance with and without a tip mass. The tip mass of 0.2 g corresponds to the actual mass of the sensors 
(PCB piezotronics 352C23).
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Fig. 11. (a) Prototype of the PRM; (b) Comparison of the measured transmittance with the predictions from SEM and FE models. The flexural bandgaps are indicated 
by blue shading; (c) Sensor layout and the corresponding acceleration measurements for sensor configuration Cases 1-3.

Y. Jian et al.                                                                                                                                                                                                                                     International Journal of Mechanical Sciences 306 (2025) 110859 

14 



Fig. 12. (a) Prototype of the DRM; (b) Comparison of the measured transmittance with the predictions from SEM and FE models. The flexural bandgaps are indicated 
by blue shading; (c) Sensor layout and the corresponding acceleration measurements for sensor configuration Cases 1-3.
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mounted on different connecting beams. To avoid missing a maximum 
amplitude because a sensor happened to be placed at a zero- 
displacement point, each sensor was tested at the left end, midspan, 
and right end of its connecting beam. The measured amplitudes, plotted 
in Fig. 11(c), show that the sensor nearest the excitation (i.e., sensor 1) 
recorded the largest amplitude and that amplitude decays with distance 
from the excitation. This spatial decay is consistent with normal wave 
propagation, with large amplitudes near the source that attenuate with 
distance, and does not indicate localized wave behavior.

Fig. 12(b) shows the measured transmittance of the DRM with L3 = 4 
cm (i.e., Prototype 2, as shown in Fig. 12(b)), which aligns well with the 
theoretical and numerical predictions. A distinct transmission peak ap
pears at 531.6 Hz within the first bandgap, highlighted by the red dotted 
circle. This experimentally detected peak closely matches the SEM and 
FE predicted peak at around 511 Hz (green dashed circle). The FE- 
simulated mode shape corresponding to the predicted peak at 511 Hz 
is superimposed as inset B in Fig. 12(b). To further verify that the 
experimentally observed peak at 531.6 Hz corresponds to a defect state, 
the sensor layout and acceleration responses at three different con
necting beams under harmonic excitation at this frequency are shown in 
Fig. 12(c). It is evident that Sensors 1 and 3, positioned outside the 
defective region, record consistently low amplitudes, indicating 

effective vibration suppression in the non-defective region. By contrast, 
Sensor 2, mounted on the defective beam, shows a strong response 
adjacent to the rhombic unit but much smaller amplitudes at the beam 
midspan. This spatial pattern matches the defect-mode shape in inset A 
of Fig. 12(b), confirming that vibrational energy is localized around the 
structural defect at 531.6 Hz. Moreover, the expected defect states 
within the second-order Bragg bandgap prove difficult to observe 
experimentally. We attribute this mainly to the damping of the PLA 
used, which typically has a loss factor of 0.02-0.04 [99]. Since the 
damping effect increases with frequency [100], resonance amplitudes at 
high frequencies are substantially attenuated, rendering the 
high-frequency defect states effectively unobservable. To achieve defect 
states above a few kilohertz, fabrication using lower-damping materials 
such as steel or aluminum is recommended. In addition, using a slower 
excitation sweep rate to avoid missing narrow peaks, and minimizing 
boundary friction with a stiff metal fixture and low-friction contact pads 
also help improve peak visibility.

Finally, prototype 3 is tested to examine multiple higher-order defect 
modes within the low-frequency bandgap. Its dimensions are optimized 
based on the parametric study in Section 4 to ensure strong energy 
localization. The results are shown in Fig. 13. The green dashed circles in 
Fig. 13(b) indicate the second-, third-, and fourth-order defect states, 

Fig. 13. Comparison of the measured transmittance of the prototype 3 with the predictions from SEM and FE models. The flexural bandgaps are indicated by 
blue shading.

Table 3 
Measured and FE-predicted defect-state frequencies for prototypes 2-3.

Prototype f1, sim (Hz) f1, exp (Hz) Δf1 f2, sim (Hz) f2, exp (Hz) Δf2 f3, sim (Hz) f3, exp (Hz) Δf3

2 511 531.6 3.9% / / / / / /
3 357.7 375.5 4.7% 688.5 741.3 7.1% 1187 1267.8 6.4%
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and their corresponding mode shapes are illustrated in panels A-C of 
Fig. 13(c). Three distinct defect-state peaks appear clearly in the 
experimental transmittance, confirming the validity of the higher-order 
defect state concept proposed in this study. Table 3 summarizes the 
measured defect-state frequencies fexp and the FE-predicted frequencies 
fsim for prototypes 2 and 3. Subscripts 1-3 denote the defect states in 
order of increasing frequency. The difference between experiment and 
simulation is quantified by the relative error Δf = |fexp − fsim| /fexp ×

100%, validating the proposed DRM design.
The above experimental findings not only verify the theoretical and 

numerical predictions but also indicate the practical feasibility of the 
proposed DRM in real-world applications. With its lightweight yet 
robust lattice configuration, the DRM can be integrated into structural 
components such as sandwich cores, load-bearing panels, or embedded 
inserts in smart infrastructures. The multi-band low-frequency defect 
modes observed here match typical ambient vibration frequencies in 
engineering infrastructures, such as transport and aerospace systems. By 
placing piezoelectric transducers at the defect sites, the DRM can serve 
simultaneously as a structural element and an energy harvesting or 
sensing device. Building on these results, future work will explore the 
fabrication and dynamic performance of such multifunctional structures 
under realistic operating conditions.

6. Conclusions

This study tackles the challenge of broadband low-frequency vibra
tion localization through the design of truss-based lattice metamaterials. 
A novel rhombus-shaped metamaterial with a single-point defect is 
proposed by selectively modifying the lengths of the connecting beams 
between rhombic units. The rhombic geometry reduces the structure’s 
effective stiffness without altering the lattice scale, enabling low- 
frequency defect modes. Building on this, the concept of higher-order 
defect states is introduced, achieved by tuning multiple natural fre
quencies of the defective element into the bandgap range. These modes 
are captured via finite element-based band structure analysis. To 
enhance computational efficiency, a dynamic model based on the 
spectral element method is developed for accurate harmonic response 
prediction.

This work yields several valuable conclusions: First, defect states are 
highly sensitive to vibration polarization. Longitudinal waves interact 
weakly with the periodic lattice, making them difficult to localize. 
Second, defect modes can be generated within the lower-frequency 
Bragg bandgaps, with energy localization strength influenced by the 
rhombic angle and connecting beam length. Third, higher-order defect 
states are primarily governed by the intrinsic modes of the defective 
beam, independent of the bandgap order, and correspond to successive 
vibration modes of a clamped-clamped beam. Fourth, low-frequency 
higher-order defect states are experimentally validated for the first 
time, showing good agreement with both theoretical and numerical 
predictions. However, starting from the second-order bandgap, signifi
cant damping effects suppress defect-mode emergence, highlighting the 
importance of targeting low-frequency regions in defective meta
material design.

Overall, this research presents a compact metamaterial design 
strategy for achieving multiple localized modes in the low-frequency 
regime, offering a new pathway for advanced vibration control and 
wave manipulation in engineering applications.
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