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ARTICLE INFO ABSTRACT

Keywords: Defective metamaterials offer significant potential for applications in filtering, sensing, waveguiding, and energy
Metamaterial harvesting, owing to defect states capable of localizing vibrational energy. However, constraints from Bragg
Wave manipulation scattering typically restrict these states to high-frequency ranges, and they are sparse within a single bandgap.
gzxfl;icfap Conventional strategies that add multiple defects broaden the spectrum but suffer from inter-defect dispersion

that weakens energy concentration. In this study, a novel defective rhombic metamaterial (DRM) is proposed to
achieve multi-band low-frequency defect states from a single-point defect. The novelty rests on two mechanisms:
(1) the rhombic geometry’s low effective stiffness significantly lowers the bandgap frequency without enlarging
lattice size; and (2) the DRM supports higher-order defect states, enabling multiple localized modes to coexist
within a single bandgap while maintaining strong localization. The band structures of the DRM are first analysed
using finite element (FE) simulations, demonstrating the concept of low-frequency higher-order defect modes.
Subsequently, the spectral element method (SEM) is employed to evaluate the transmittance characteristics,
followed by parametric studies to explore the influence of geometric parameters on energy-localization behavior.
Finally, the theoretical and numerical predictions are validated experimentally, providing the first experimental
evidence of higher-order defect modes in the sub-kilohertz range. Overall, this work presents a promising
strategy for broadband low-frequency energy localization using compact single-point-defect metamaterials,
paving the way for higher power density in miniaturized energy harvesters and enhanced resolution in sensing
applications.

Higher-order states
Multi-band energy localization

1. Introduction leads to standing waves and a significant amplification of vibrational
energy at the defect site. Although similar to structural resonances,
defect states have been shown to achieve much stronger energy locali-

zation [15-17]. As a result, defective PnCs and metamaterials have

Phononic crystals (PnCs) and metamaterials have attracted wide-
spread attention due to their exceptional ability to manipulate wave

propagation through engineered periodic structures. A variety of unique
wave phenomena have been extensively explored in these systems,
including negative refraction [1-3], bandgap formation [4-6], topo-
logical edge states [7-9], and non-reciprocal wave propagation [10-12].
Among these phenomena, defect states are of particular interest for their
ability to localize energy. Defect states refer to localized vibrational
modes induced by intentional disruptions of the periodicity in
PnCs/metamaterials [13,14]. These states emerge within bandgaps, as
the structural defect functions as an energy trap, capturing vibrational
energy that would otherwise be attenuated. The resulting confinement
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shown great potential in lots of applications, such as vibration filtering
[18-21], sensing [22-25], waveguiding [26-29], and energy harvesting
[30-34]. For instance, directional wave propagation was realized using
line defects formed by removing scatterers [35]. Acoustic energy
focusing with pressure amplification was achieved through
Helmholtz-resonator-based defects [36], with transmission gains up to
30.83 mV/Pa.

Despite these promising prospects, defect states in PnCs and meta-
materials face two major limitations. First, they typically emerge at
relatively high frequencies, usually above several kilohertz [37-39]. For

E-mail addresses: cxial44@aucklanduni.ac.nz (C. Xia), guobiaohu@hkust-gz.edu.cn (G. Hu).

https://doi.org/10.1016/j.ijmecsci.2025.110859

Received 28 June 2025; Received in revised form 16 September 2025; Accepted 17 September 2025

Available online 18 September 2025

0020-7403/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://orcid.org/0000-0002-8094-0769
https://orcid.org/0000-0002-8094-0769
https://orcid.org/0009-0008-4596-925X
https://orcid.org/0009-0008-4596-925X
https://orcid.org/0000-0002-1288-7564
https://orcid.org/0000-0002-1288-7564
mailto:cxia144@aucklanduni.ac.nz
mailto:guobiaohu@hkust-gz.edu.cn
www.sciencedirect.com/science/journal/00207403
https://www.elsevier.com/locate/ijmecsci
https://doi.org/10.1016/j.ijmecsci.2025.110859
https://doi.org/10.1016/j.ijmecsci.2025.110859
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2025.110859&domain=pdf

Y. Jian et al.

Defective

(a)

International Journal of Mechanical Sciences 306 (2025) 110859

/ beam _
PRC /\ \}ﬁ L/ 1 \ \ \ PBC - 1000 E
___,_l___ ——T" _— — _— <
L / ' z
RN Tl \ P Z 800 2
i . JoLy N/ Ly N v y P2 2
L J £ 600 B=
Y & 7
ds @ 400 E
g _ 278
b % 200 {{—Flexural stiffness 10° 2
PBC PBC / = — Longitudinal stiffness 2
X oooL ‘... h 0 * * : : 1003
5 - / N > e > oL
y E / i " N o \'\/ o \’\, o \'\/ o \b‘. o \"\{}'
! Jood s E » N G’ ®
T o ()/ L, (cm)
—e— Flexural modes Longitudinal modes F-BG
@ M ' ‘ (©) 3000 ' 9550500 000ar.
2500} : o
F-BG 3: [1712.9, 2566.1] Hz 2400 | :
F-BG 4: [1590.2, 2778.6] Hz
2000 1 -
N N
T pee ° 0000000000ssssscsne] = 1800
21500 1 2
5 F-BG 2: [925.4, 1615.5] Hz § -
g 3" 1200 TS — |
£ 1000 5 1 £ -““;[“‘ 12587 He -
M | F-BG 2: [504.1,859.7] Hz |
500 [F-BG 1: [241.8, 646.1] Hz Ii . 600 Seoece 00600060060066660006 -
MF.»,,_ F-BG 1:[113.7,4545] Hz L
0 oeSe ' L L eoeee
0 0.2 0.4 0.6 0.8 1 1
RE(g*)

(f) Max

Min

Max

Min

Fig. 1. (a) Schematic of the DRM with infinite configuration. “PBC” denotes the Floquet-Bloch periodic boundary condition; (b) Infinitely perfect rhombic meta-
material and the cross-section of the struts; (c) The effective stiffness of a rhombic unit with varying @ and L,. a varies from 5° to 85°, with L; = 0.02/cos(a) to
maintain a constant lattice constant d = 6 cm; (d) Band structure of the PRM. Blue curves with circular markers represent flexural modes, and purple curves with
circular markers correspond to longitudinal modes. The flexural bandgaps are highlighted by blue-shaded regions; (e) Band structure of the PRM with modified L,
and a; Mode shapes corresponding to the selected points (green dot) in (d) and (e) are shown in (f) and (g), respectively. F and L denote the flexural mode and

longitudinal modes, respectively.

example, defect modes in the 20-60 kHz range have been reported in
various scatterer-based PnC and metamaterial designs, such as those
incorporating metallic cylindrical scatterers [40], embedded polygonal
cavities [41], and structures with alternating sections of different ma-
terials [42]. The high-frequency nature of these defect modes is pri-
marily attributed to the Bragg scattering mechanism, which underlies
Bragg bandgaps and is formed only when the lattice constant is com-
parable to the wavelength [43]. Consequently, shifting defect modes to
lower frequencies typically requires either impractically large structures

or alternative design strategies. To target sub-kilohertz excitations
commonly encountered in buildings, vehicles, and industrial machinery
[44-46], locally resonant designs embed resonators in a metamaterial
lattice and create defect sites by selectively removing resonators [16,
47]. This exploits subwavelength wave control to generate
low-frequency defect states without increasing the unit-cell size, but the
added resonator mass compromises suitability for lightweight
applications.

Another challenge for defective PnCs and metamaterials is their
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narrow operational bandwidth, which limits effectiveness in broadband
vibration environments and multi-band localization tasks. To address
this, researchers have proposed several strategies that generally fall into
three categories. The first approach is defect-mode splitting, where a
single defect mode is split into multiple modes to broaden the opera-
tional bandwidth. This can be realized by introducing dual structural
defects [48-52] or by attaching a secondary resonator at the defect site
[53]. However, arbitrarily adding defects does not necessarily produce
additional defect states, and energy localization may weaken as defect
sites compete. The second strategy is multi-bandgap defect engineering,
in which defect states are independently created within distinct
bandgaps. Examples include creating defect states separately in Bragg
and locally resonant bandgaps [54], or in two locally resonant bandgaps
governed by different mechanisms [55]. The third approach utilizes
multiphysics coupling to realize reconfigurable defect states, thereby
expanding the frequency coverage. This route typically involves smart
materials such as piezoelectric [56-59] and magnetostrictive materials
[60,61]. By applying external electric or magnetic fields, the effective
stiffness of the defect structures can be actively tuned to control defect
frequencies. In our recent work [62], we integrated multi-modal shunt
resonant circuits into piezoelectric metamaterials to create “electrically
controlled defects”, enabling arbitrary and decoupled multi-band wave
localization. Thermal loading at defect sites can also modify local stiff-
ness through the stress-stiffening effect, thereby altering defect-mode
behavior [49,63,64]. However, the above active tuning methods
require external energy, which limits their use in passive applications
such as energy harvesting or autonomous sensing.

In this study, we propose a novel defective rhombic metamaterial
(DRM) capable of generating multiple low-frequency defect states
through a single-point defect within a compact lattice. This structure
consists of a periodic rhombic-like truss made of slender beams, where
the defect is introduced by locally modifying the dimensions of a con-
necting beam. For ease of differentiation, the uniform-cell counterpart is
termed the perfect rhombic metamaterial (PRM). Truss metamaterials
have garnered considerable attention for their low-frequency bandgaps
effect, largely attributed to their concave geometries [65,66]. Repre-
sentative configurations include X-shaped [67,68], rhombic [69,70],
pentagram [71,72], and hexagonal designs [73]. These structures
combine high strength with low weight, ideal for load-bearing yet
lightweight applications [74]. As the basic components of truss meta-
materials, beams and rods have been extensively investigated for their
mechanical behavior [75-77]. To capture the dynamics of truss periodic
units, common modeling methods include the finite element method
(FEM) [78], the transfer matrix method (TMM) [79], and the spectral
element method (SEM) [69,80]. Among them, TMM may suffer nu-
merical instability at high frequencies due to the successive multipli-
cation of transfer matrices, particularly in systems with massive
substructures [81]. FEM, while more stable, becomes computationally
expensive as the structural scale increases [82,83]. In contrast, SEM
improves stability and efficiency by constructing global matrices with a
minimal number of degrees of freedom [84,85], making it especially
suitable for analyzing complex periodic systems such as truss
metamaterials.

Building on the low-frequency characteristics of truss metamaterials,
this work embeds a single defect into a compact rhombic lattice to
generate low-frequency defect states (here, “low-frequency” specifically
refers to the sub-kilohertz range). This approach achieves low-frequency
operation without resorting to large structures or significant added
mass. To broaden the defect-mode frequency range, we pioneer the
concept of higher-order defect states, defined as a sequence of distinct,
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spatially localized modes within a single Bragg bandgap, each tied to a
successive eigenmode of the defect element. Unlike the conventional
defect-mode splitting [48,49,52] or multi-bandgap defect approaches
[54,55], which depend primarily on the fundamental resonance and
require multiple defect sites, our approach exploits multiple
higher-order modes at a single defect site to localize flexural waves in-
side one bandgap. This mechanism substantially improves bandgap
utilization while the single-point defect reduces structural design
complexity. In what follows, we demonstrate the feasibility of exciting
higher-order defect states via the defect’s higher-order flexural modes,
validate the concept through modal analysis, and compare our design
against existing multi-defect-mode architectures to highlight its
simplicity and performance advantages.

This paper is organized as follows. Section 2 details the DRM design
and analyzes its multiple low-frequency defect bands through band
structure analysis. Section 3 introduces the dynamic model of the DRM
based on the SEM. In Section 4, the multi-band low-frequency energy
localization induced by defect states is systematically analyzed using
both SEM and FE models. Section 5 experimentally validates the accu-
racy of the theoretical and simulation results and confirms the formation
of low-frequency higher-order defect states. Finally, Section 6 provides
concluding remarks.

2. Design and mechanism of the defective rhombic
metamaterials

This section presents a framework utilizing a rhombic-shaped truss
structure to effectively lower and broaden the frequency range of defect
states. Section 2.1 details the geometry of the proposed DRM. Section
2.2 presents band structure analyses showing low-frequency bandgaps
and defect modes, and demonstrates how higher-order defect state
mechanisms increase defect-mode density to enable broadband wave
localization in the sub-kilohertz regime.

2.1. System configuration

The proposed DRM structure comprises n unit cells arranged peri-
odically, each featuring a rhombus-shaped substructure, as shown in
Fig. 1(a). In the global coordinate system, each substructure consists of
six uniform, isotropic elastic beams. The inclined beams forming the
rhombus have length L; and are oriented at an angle a with respect to
the x-axis, while the horizontal connecting beams have length Ly. All
beam elements share identical cross-sectional dimensions, with width b
and thickness h, as shown in Fig. 1(b). A structural defect is introduced
by changing the length of one connecting beam to L3, which breaks the
periodicity and disrupts the physical mechanism of bandgap formation.
Such asymmetry induces localized defect modes inside the bandgap. By
adjusting the defect geometry, the mode confined around the defect site
can be tailored, allowing exploration of low-frequency and broadband
wave localization behavior. In addition, Fig. 1(b) presents the PRM in its
infinite configuration, used as a reference to verify the conditions for
defect mode generation.

2.2. Defect-band analysis

This subsection investigates the defect-band properties of the DRM
using band structure analysis. The relation between circular frequency o
and wavenumber ¢, commonly referred to as the band structure, is a
fundamental tool for characterizing wave propagation in periodic sys-
tems. To investigate the formation of defect states for different wave

Table 1
Material and geometric properties of the DRM and PRM.
Ly(cm) Lo(em) La(cm) a®) b(cm) h(cm) E(Gpa) p(kg/m>) v
4 2 4 60 0.5 0.3 2.2e9 1100 0.394
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Fig. 2. (a) Band structure of the DRM. Blue curves with circular markers represent flexural modes, and purple curves with circular markers correspond to longi-
tudinal modes. The flexural bandgaps are highlighted by blue-shaded regions. Three defect bands are shown as red curves with circular markers; (b) Mode shapes

corresponding to the selected points (green dot) in (a).

polarizations, their low-frequency properties, and mode-localization
behavior in the proposed DRM, band structure analysis is conducted
using COMSOL Multiphysics. Two periodically constrained configura-
tions are considered: PRM (Case 1) and DRM (Case 2). For each case, the
band structures of the above models are derived by computing the
eigenfrequencies @ over a range of wavenumbers q. Material and geo-
metric parameters are summarized in Table 1, where the lattice constant
d is only 6 cm, consistent with the compact design described earlier.

In Case 1, Floquet-Bloch periodic boundary conditions are applied to
the cross sections of the left and right ends of the rhombic unit cell, as
illustrated in Fig. 1(b). The resulting band structure is presented in Fig. 1
(d). Re(g*) denotes the real part of the dimensionless wavenumber g* =
qd/=. The blue and purple curves in Fig. 1(d) represent the flexural and
longitudinal modes, respectively, and the corresponding mode shapes at
selected points (green dots) are provided in Fig. 1(f). It can be observed
that the PRM exhibits three flexural bandgaps (blue-shaded regions) in
the frequency ranges of 241.8 Hz-646.1 Hz, 925.4 Hz-1615.5 Hz, and
1712.9 Hz-2566.1 Hz, corresponding to the first-, second-, and third-
order Bragg scattering mechanisms, respectively. A first-order longitu-
dinal bandgap appears at a higher frequency range of 757.4-2061.6 Hz,
reflecting the structure’s greater axial stiffness compared to its bending
stiffness. Notably, the overlapping frequency region between the flex-
ural and longitudinal bandgaps constitutes a complete (omnidirectional)
bandgap [86], in which propagation of both flexural and longitudinal
waves is suppressed.

It is important to note that the center frequency of the first-order
flexural bandgap is relatively low, and significantly lower than that of
conventional Bragg-type metamaterials with comparable lattice con-
stants, which typically fall within the range of 20 kHz-60 kHz [40-42].
Such sub-kilohertz Bragg bandgaps have also been observed numerically
and experimentally in other truss-type metamaterials employing similar
polymeric materials and centimetre-scale lattice constants [65,80,87].
Actually, many studies have lowered Bragg-type bandgap frequencies
through topology optimization [88,89], by adding concentrated masses
to reduce eigenfrequencies [90], or by embedding of acoustic inclusions
(e.g., sonic-black-hole structures) to reduce the unit-cell effective sound
speed [91]. To explain the low-frequency Bragg bandgaps observed
here, we invoke the Bragg scattering condition that governs bandgap
formation, given by [92]:

2d =NA(N=1,2,..), @

where 1 is the wavelength and N denotes the bandgap order. For flexural
waves propagating in beam structures, by incorporating the relationship
between wave velocity and frequency, the center frequency of the first-
order flexural bandgap can be estimated as follows:

1 |Elg
f Bragg ~ 2_(12 P A )

@

where El¢ and pA represent the effective stiffness and the mass density,
respectively. Due to the rhombic geometry, the effective stiffness of the
unit cell differs from that of a simple straight beam and can be tuned by
L; and a. According to Eq. (2), the bandgap center frequency varies with
the effective stiffness El¢ when the lattice constant d and mass density
pA are held fixed. To illustrate this effect, L; = 5.85 cm and a = 70° are
selected, while keeping d = 6 cm. The resulting band structure in Fig. 1
(e) shows a downward shift in the first flexural bandgap to the range of
113.7 Hz-454.5 Hz. Corresponding mode shapes at selected points
(green dots) are plotted in Fig. 1(g).

To quantify how L; and a affect the effective stiffness, COMSOL
simulations are conducted to estimate the flexural and longitudinal
stiffness of a rhombic unit for a variety of geometries. In the Solid Me-
chanics module, one end of the rhombic unit is fixed, while a unit force is
applied either perpendicular or parallel to the connecting beam at the
other end. A static study is used to evaluate the stiffness. The angle a
varies from 5° to 85°, and L, is adjusted accordingly using L; = 0.02/cos
(@) to maintain a constant lattice constant d = 6 cm. As shown in Fig. 1
(c), the flexural stiffness slightly increases at small «, then gradually
decreases, whereas the longitudinal stiffness decreases consistently with
increasing a. This behavior explains the lower bandgap frequencies
observed in Fig. 1(e) for the identical lattice constant. In summary, these
findings confirm that the rhombic metamaterial can sustain low-
frequency bandgaps with compact lattice constants, thereby providing
the foundation for the low-frequency defect modes explored in this
study.

In Case 2, a supercell approach is employed to capture defect bands
induced by the DRM. A supercell composed of six units is considered,
where the connecting beam between the third and fourth cells is
modified to L3 to introduce a defect, thereby breaking the translational
symmetry along the beam direction. Floquet-Bloch boundary conditions
are applied at the ends of the supercell, as illustrated in Fig. 1(a). Ma-
terial and geometric parameters are used in Table 1, and the modified
lattice constant is ds = 38 cm. The resulting band structure, shown in
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Fig. 3. (a) Band structure of the DRM with higher-order defect states. Blue curves with circular markers represent flexural modes, while purple curves with circular
markers correspond to longitudinal modes. Higher-order defect bands are shown as red curves with circular markers; (b) Mode shapes corresponding to the selected
points (green dot) in the band structure; (c) Reference first- and second-order flexural modes of a clamped-clamped beam computed by FE.

Fig. 2(a), contains significantly more dispersion branches than in Fig. 1
(a). This increase arises from band folding introduced by the supercell
configuration, which compresses the dispersion curves into a smaller
Brillouin zone and thereby generates additional bands [93], while the
bandgap ranges remain largely unchanged. Importantly, the change in
L3 breaks the PRM’s translational symmetry and locally disrupts the
mechanism responsible for bandgap formation. Consequently, pass-
bands (i.e., defect bands) appear within each of the original multiple
bandgaps, as indicated by the red curves marked with circles. These
bands are nearly flat, meaning their slopes and thus their group veloc-
ities are close to zero. At these frequencies, wave propagation is strongly
suppressed, and energy becomes confined near the defect. As a result,
standing-wave-like modes emerge at the defect site, leading to signifi-
cantly amplified local vibration amplitudes.

To gain more insight into the defect state characteristics, Fig. 2(b)
presents mode shapes of representative defect states Da, Db, and Dc.
From which the following observations are made: (1) wave localization
and energy confinement are evident in Da-Dc, with vibrational energy
concentrated around the spatial defect. In contrast, the reference flex-
ural mode F exhibits a distributed energy profile. Such localization in-
dicates potential for waveguiding, sensing, and narrow-band filtering
applications; (2) these defect states originate from flexural coupling
between the defective elements and the periodic host, as evidenced by
their exclusive appearance within the flexural bandgaps (first- through
third-order Bragg scattering). No defect modes occur in the longitudinal
bandgap. Two factors explain the observed behavior. On the one hand,
longitudinal (in-plane) waves couple weakly to the lattice periodicity
and therefore tend to transmit rather than localize. On the other hand,
beam theory predicts that changes in L3 affect axial stiffness far less than
bending stiffness, and consequently, symmetry breaking induced by
beam-length variation is weak for axial excitations; (3) the rhombic cell
design supports low-frequency localization, with the defect state in the
first-order flexural bandgap occurring at approximately 418.1 Hz when
q* = 1. Beyond the above findings, the modal shapes of Da-Dc reveal
distinct energy localization patterns. Specifically, the Da mode exhibits a
dipole-like  localization pattern [94], with peak strain
odd-symmetrically distributed on both sides of the defect center and in
opposite phases. In contrast, Db and Dc modes show monopole-like
distributions [95], characterized by a single strain maximum at the
defect center. This variation implies that, for applications such as energy
harvesting or sensing, the placement of transduction elements should be
tailored to the mode shape to avoid phase cancellation and ensure
optimal performance.

It should be noted that wave propagation within a defect band
typically exhibits near-zero group velocity, resulting in sharp, narrow-
band frequency responses that limit practical use. Although the multiple
defect states shown in Fig. 2(a) expand the localization bandwidth, they
lie in separate bandgaps and only the first occurs at relatively low fre-
quencies. Broadband localization is ideally achieved by introducing
multiple defect states within the first-order bandgap. To this end, Fig. 3
(a) presents the band structure of the DRM for L3 = 14 cm, with all other
parameters listed in Table 1. For clarity, we focus on the characteristics
of the defect states within the first-order flexural bandgap. Two defect
bands, denoted by red curves with circular markers, emerge at 301.6 Hz
and 588.3 Hz. The selected mode shapes, labeled as D1 and D2, are
shown in Fig. 3(b), clearly indicating energy confinement around the
defective beam. Interestingly, the energy concentration regions in D1
and D2 resemble the first- and second-order flexural modes of a
clamped-clamped beam, respectively. To further verify this correspon-
dence, Fig. 3(c) presents FE eigenmode calculations for a beam under
clamped-clamped boundary conditions with the same material and
geometric parameters as the defective beam in Fig. 3(b). It can be seen
that the clamped-clamped beam’s first and second flexural mode shapes
closely match the localized energy-concentration patterns observed at
the defect site in the DRM.

Based on this observation, we hypothesize that the formation of
defect states is influenced not only by the coupling between the defect
and the periodic host (i.e., as illustrated in Fig. 2(a)), but also by the
defect’s intrinsic dynamics. The appearance of multiple defect bands in
Fig. 3(a) can be attributed to the following mechanism: as the length of
the defective beam L3 increases, its flexural eigenfrequencies shift
downward and become more closely spaced. When one or more of these
eigenfrequencies fall inside the bandgap, they cannot couple to propa-
gating Bloch modes and therefore localize around the defect. Accord-
ingly, we identify the defect states shown in D1 and D2 as the higher-
order defect states. It is important to emphasize that, in terms of for-
mation mechanism and structural design, these higher-order defect
states differ fundamentally from existing dual-defect or multi-bandgap
defect designs. Specifically: (1) In dual-defect designs [48,49,52],
coupling between the two defects splits originally coincident resonances
into two distinct frequencies. Multi-bandgap defect designs, on the other
hand, generate defect states by creating separate bandgaps through
distinct mechanisms, each supporting a single defect mode. For
example, [55] employs the mechanical and acoustic resonances of
Helmholtz resonators to produce defect modes in two distinct bandgaps.
However, these approaches still primarily rely on the defect’s first-order
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Fig. 4. (a) Spectral beam element in the local coordinate system; (b) Transformation from the local coordinate system x;-y; to the global coordinate system x,-y, for
the upper left and lower right beam elements; (c) Transformation from the local coordinate system x2-y» to the global coordinate system xg-y, for the lower left and
upper right beam elements; (d) Assembly procedure of the global dynamic stiffness matrix Sprm(w) in the DRM.

modes. (2) To achieve multiple defect states, the aforementioned
methods require introducing two or more defects into the periodic
structure. In contrast, the design in this work leverages the higher-order
defect state mechanism, enabling a single defect to produce multiple
defect states within a single bandgap, thereby significantly enhancing
design flexibility.

In summary, the preceding band structure analysis highlights the
proposed DRM’s advantage in achieving broadband low-frequency
defect states. However, because dispersion analysis based on the
finite-element method is computationally expensive and less effective at
capturing the frequency-response characteristics of localized defect
states, a dynamic model of a finite-length DRM is proposed in the
following section.

3. Spectral element method

This section develops a dynamic model of the proposed DRM using
the spectral element method (SEM). SEM ensures high accuracy while
offering greater computational efficiency by reducing the number of
element nodes. The elemental dynamic stiffness for the beam-like unit is
derived, and the procedure for assembling the DRM’s global dynamic
matrix is introduced.

3.1. Derivation of the dynamic stiffness matrix

The analysis is conducted under the assumption of small elastic de-
flections [96,97], meaning that transverse displacements are much
smaller than the beam length and axial strains remain within the linear
elastic range. Under these conditions, geometric nonlinearities such as
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stretching-induced bending and mid-plane stretching can be neglected,
allowing transverse and axial vibrations to be treated as uncoupled.
Consequently, the partial differential equation governing the motion of
the beam element can be expressed as follows [69]:

*w(x, t) op(x,t)  Pw(x,t)

pA o2 +K'GA|: o }:0
o 2

P ";(t’z‘ Y | xGA {qb(x, B awgc t)} — g’ ‘gi’; 0 _o. ®)
*u(x, t) Fulx,t)

P AT e =0

where w(x,t), ¢(x,t)and u(x,t) represent the transverse, rotational, and
longitudinal displacements, respectively. E and G are the Young’s
modulus and shear modulus, respectively, which are related by G =
E/[2(1 + v)], where v is the Poisson’s ratio. p denotes the mass density,
A = bxh is the cross-sectional area, and I is the area moment of inertia.
kis the shear correction factor depending on the shape of the cross-
section. Considering the DRM structure under harmonic excitation, the
steady-state displacement solution in Eq. (3) can be expressed as:

1) = O (x)e 4
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k
ki :\/—Fi\/nk§+ kg +4(1 = nkg)

k
k=75 \/’7"127 — 1K+ 4(1 - k) ®
k3 = CU\/%,
1 1

wpa)? wp)? I _EI I
where kr = (%), ke = (%G ), 1=4+a and m = 3 By
substituting the nodal coordinates [W;®;U; Wo®,Us;] into Eq. (7), the
nodal displacements can be determined as:

w(0) 1 1 0 1 1 0 Ay
@(0) r —I 0 1) —TI2 0 Az
uo) | 0 0 1 0 0 1 Az ©)
W(L) - e—zle ei]qL 0 e—ikzL eﬂ(gL 0 A4
(L) rie ¥l _pekl 0 pekel _pekl As
U(L) 0 0 el 0 0 e*l]||As
d R A

Note that the transverse shear force, bending moment, and longitu-
dinal force are distributed along the beam element in the following
forms:

By substituting Eq. (4) into Eq. (3) and eliminating the time- dw(x)
harmonic dependence e, the motion equation in the frequency Fy =xGA { dx @(x)}
domain is obtained as:
) M, = El d‘z)((x) (10)
dd(x) d*W(x)
2 —
— 0’ pAW(X) + KGA( e | =0 ()
F, =EA F
dw(x d*®(x
—@”pI®(x) + kGA {‘D(X) - d)(c )} —EI axg ) _ 0 ) In other words, the nodal forces of a beam element can be expressed
) in terms of its nodal displacements. As illustrated in Fig. 4(a), nodes 1
—w?pAU(x) — EA FU(x) =0. and 2 correspond to the left and right ends, respectively. The subscripts
dx? X, ¥, and z denote the coordinate axes associated with the corresponding
Assuming the general solution to Eq. (5) is: nodal forces. Substituting the nodal forces [F;M;F)}FszfFf( into Eq. (7)
yields:
—Fy(O) —KGA(—ikl — T1) —KGA(ikl + rl) 0 —KGA(—ikz — rz) —KGA(—ikz + rz) 0 A1
—MZ(O) iEIr1k1 iEIrlkl 0 iEIrzkz iEIrzkz 0 A2
~F(0) | _ 0 » o iEAK; 0 _ 0  —iEAks ||As an
F,(L) KGA(—ik; — ri)e™"  kGA(ik; +rp)e™* 0 KGA(—iky — ry)e ™" kGA(iky +1p)e**" 0 A,
M,(L) —iElr ket —iElIr ke 0 —iEIrskpe —iElr;koe™* 0 As
Fe(L) 0 0 —iEAkse st 0 0 iEAkse®t | | Ag
|y S———
f H A
W(x) = Ae*™
®(x) = rAe™ 6) Combining Eqs. (9) and (11) allows the representation of nodal force
U(x) = Ae', and moment in terms of the nodal displacements as:

where A, r, and A are to-be-determined coefficients depending on the
nodal displacements. By substituting Eq. (6) into Eq. (5) and solving the
eigenvalue problem, the general solution in Eq. (6) can be rewritten as:

O(x) = nAe % A 4 rAe X — ryAgekex @
U

W(x) = Aje ™% 4 Ajefrx 4 A emox | Agelex
(x) = Aze7kox | Agetksx,

wherer, = — i(k’% — %) /kp, p =1 or 2, and the wavenumber k1, ko,

and kg are expressed as:

f = HR'd. 12)

The frequency-dependent dynamic stiffness matrix of the beam
element is given as Sz(w) = HR'.

3.2. Assembly of the dynamic stiffness matrix

In this subsection, the assembly of the global dynamic stiffness ma-
trix for the DRM structure is described, from which its dynamic char-
acteristics are obtained. It is important to note that Sg(w) is derived from
the local coordinate system and must first be transformed into the global



Y. Jian et al.

(2)

50
g 0
3
g
£ -50
=)
= -100 r|—a—SEM )i
—-=-FE (fine mesh) ¥ |
—o=FE (coarse mesh) { |
-150 F-BG U
(c) 0 500 1000 1500 2000 2500

50
g o0
3
g
£ -50
g
=
s é
= -100 [ [——SEM i L
=-==FE (fine mesh) ¢ !
—o— FE (coarse mesh) q
-150F|  F-BG : |
: : 1, . .
0 500 1000 1500 2000 2500
Frequency (Hz)

International Journal of Mechanical Sciences 306 (2025) 110859

~
(=3
~

)
=
3
g
£
5
= -100 r|—a—SEM :
—-=-FE (fine mesh)
—o= FE (coarse mesh)
-150°f L-BG 1
(d) 0 500 1000 1500 2000 2500
50
~ Dl
2 o *
3
g
£ -50
=
g
&= -100 F[——SEM -
—-=-FE (fine mesh)
—o= FE (coarse mesh)
-150 F F-BG 1
0 200 400 600 800
Frequency (Hz)

Fig. 5. (a) Transmittance of the PRM under flexural vibration; (b) Transmittance of the PRM under longitudinal vibration; (c) Transmittance of the DRM with L3 = 4
cm under flexural vibration; (d) Transmittance of the DRM with L = 14 cm under flexural vibration. In all cases, results are compared among SEM, fine mesh, and

coarse mesh FE simulations.

coordinate system to construct the stiffness matrix of the rhombus-
shaped substructure. The relationship between the two beam elements
forming the upper left and lower right sides of the rhombus substructure
and the global coordinate system is illustrated in Fig. 4(b). Based on
geometric relations, Sg(w) in the x;-y; coordinate system undergoes the
following transformation to obtain its global counterpart S$ (w):

cos(a) 0 —sin(a) 0 0 0
0 1 0 0 0 0
| sin(@) 0 cos(a) 0 0 0
L=1"09" o cos(a) 0 —sin(a) 16
0 0 0 1 0
0 0 sin(a) 0 cos(a)

8§ (@) = TiSp(@)Ty,

13)

where T; is the transformation matrix, expressed as:

cos(a) O sin(a)
0 1 0

T, — —sin(a) 0 cos(a)
1T 0 0 0
0 0 0
0 0 0

0

0

0
cos(a)

0
—sin(a)

0

0
0
0
1
0

14)

Similarly, for the beam elements located at the lower left and upper
right sides of the rhombus substructure, their coordinate system re-
lationships are illustrated in Fig. 4(c). Sp(w) in the xz-y2 coordinate

system transforms:

8§ (w) = TiSp(®) T,

(15)

where Tj is the transformation matrix, given as follows:

For beam elements aligned with (xgy,), no coordinate trans-
formation is required. Subsequently, the global stiffness matrix Spruy (@)
of the DRM can then be assembled based on the finite element assembly
procedure, which is graphically illustrated in Fig. 4(d). A representative
rhombus-shaped substructure, consisting of six nodes labeled 1 through
6, is selected for demonstration. The four inclined beams, denoted by the
superscripts ur, ul, ll, and Ir, and oriented toward the four diagonal di-
rections of the rhombus center, are modeled using Eqs. (13) and (15).
The superscript h indicates connecting beams. Based on the nodal con-
nectivity in Fig. 4(d), the stiffness matrix of the rhombus-shaped sub-
structure can be assembled. By further considering periodicity, Sprm(®)
can be obtained.

In this study, a cantilever boundary condition is applied, where the
left end of the DRM is clamped to a fixture and subjected to a unit force,
while the right end remains free. Under this configuration, both rota-
tional and longitudinal displacements at the clamped end are con-
strained to zero. The governing equation for the finite-length DRM is
given as:
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Fig. 6. (a) Heatmap of the DRM’s transmittance versus a (10°-80°), with defect-state peak marked by red dots; (b) Transmittance curves for slices A, B, and C in (a),
with defect-state peaks highlighted by red pentagrams; (c) Mode shapes at the defect-state peak frequency for cases A, B and C, with the total DRM length L indicated;
(d) The variation of the normalized vibration amplitude of the defective beam at the defect-state frequency with changing a.
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U 0

where the superscripts [ and r refer to the nodes located at the leftmost
and rightmost ends of the structure, respectively. Given that ®' = 0 and
Ul = 0, the second and third rows and columns of Spry(@)can be elim-
inated, as shown in Fig. 4(d). The reduced system can then be solved to
obtain the nodal displacements. The transmittance response 7 of the
DRM structure in the y, direction is determined as:

7 = 20log,,(|W(x) / W(0)]). (18)

4. Characteristic analysis of defect states

This section begins with validation of the SEM model against finite
element (FE) simulations. Subsequently, a parametric analysis is con-
ducted to investigate how geometric parameters influence the low-
frequency and broadband defect state characteristics of the DRM.

4.1. Validation of the SEM

In this subsection, validation of the previously developed SEM model
is carried out using COMSOL 6.1, where the Timoshenko Beam interface
is employed to simulate the rhombic-shaped truss structure. This inter-
face accounts for shear deformation and rotary inertia, making it suit-
able for dynamic analyses of thick beams. For the finite-length structure,
six unit cells are modeled, which satisfies the minimum requirement for
bandgap formation [98]. Both the PRM and the DRM structures, corre-
sponding to Case 1 and Case 2 in Section 2, are considered, with geo-
metric and material parameters consistent with those in Table 1. The
finite-length metamaterial is subjected to clamped-free boundary con-
ditions. A time-harmonic force Fy, = Fy = Foei“” is exerted at one end to
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Fig. 7. (a) Heatmap of the DRM’s transmittance versus Ly (0.5 cm-9.5 cm), with defect-state peak marked by red dots; (b) Transmittance curves for slices A, B, and C
in (a), with defect-state peaks highlighted by red pentagrams; (c) Mode shapes at the defect-state peak frequency for cases A, B and C, with the total DRM length L
indicated; (d) Variation of the normalized vibration amplitude of the defective beam at the defect-state frequency with changing L.

excite flexural or longitudinal vibrations, and the displacement at the
opposite end is recorded to compute the transmittance 7.

Fig. 5(a) and (b) present the transmittances of the PRM structure
under Fy and F excitation, respectively, as obtained by the SEM and FE.
In the FE results, both fine-mesh (112 elements) and coarse-mesh (57
elements) configurations are compared. The shaded regions in blue and
pink indicate the flexural and longitudinal bandgaps, respectively. As
shown in Fig. 5(a), the SEM predictions highly agree with the finely
meshed FE results below 2000 Hz. By contrast, the coarse-mesh FE re-
sults deviate significantly from fine-mesh ones beyond the second-order
Bragg bandgap, indicating reduced accuracy. This underscores the effi-
ciency of SEM, which achieves high precision with fewer elements and
degrees of freedom, thereby improving computational efficiency.
However, discrepancies between SEM and finely meshed FE become
more pronounced at higher frequencies. This behavior stems primarily
from the breakdown of the long-wavelength approximation as the
wavelength becomes comparable to the beam cross-section. In addition,
localized three-dimensional deformation at joints and connections (for
example, sectional warping, torsion-bending coupling, and local rota-
tional inertia) becomes significant at higher frequencies but is not
captured by Timoshenko beam models. Therefore, in this study, the

10

SEM’s predictive accuracy for the DRM is effectively limited to 2000 Hz.
For frequencies above this threshold, finely meshed FE analysis is rec-
ommended, with element sizes on the order of one-eighth of the shortest
target wavelength, and additional local refinement at joints to ensure
adequate resolution of the smallest geometric features.

Furthermore, Fig. 5(c) and (d) present the dynamic response of the
DRM structure with Ly = 4 cm and L3 = 14 cm, respectively. In Fig. 5(c),
three distinct peaks, marked with pentagrams and labeled Da, Db, and
Dc, emerge within the first three flexural bandgaps. These peaks corre-
spond to defect states and align with the defect bands observed in Fig. 2
(a). In Fig. 5(d), the elongated defective beam results in two defect state
peaks, D1 and D2, within the first-order flexural bandgap, representing
higher-order defect states, respectively. These results are consistent with
those shown in Fig. 3(a).

Subsequently, we investigate the influence of three principal geo-
metric parameters on the bandgap and defect-state characteristics of the
DRM structure: the rhombic internal angle (@), the length of the con-
necting beam (L), and the defective beam (L3). Specifically, the analysis
focuses on how variations in these parameters affect the bandgap’s
center frequency and bandwidth, as well as the frequencies and number
of defect states.
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Mode shapes at the defect-state peak frequency for cases A, B and C.
4.2. Effect of rhombic internal angle

Variations in the rhombic internal angle a substantially alter the
lattice constant of the DRM structure, necessitating a systematic inves-
tigation of its dynamic response. Fig. 6(a) presents a heatmap of the
DRM structure’s transmittance as a varies from 10° to 80°. The blue
shading denotes the bandgap, while the yellow contours trace the
transmission peaks, with contours located inside the bandgap repre-
senting defect states. By analyzing mode shapes from FE simulations, we
pinpointed the segments of these contours exhibiting vibrational local-
ization and marked them with red dots. It can be seen that as « increases,
the defect-state frequency first rises slightly and then gradually de-
creases, although the total variation remains small. To show more de-
tails, three representative cases are selected: A (@ = 20°), B (@ = 50°),
and C (@ = 75°), as indicated by pink dashed lines in Fig. 6(a). Their
corresponding transmittance are shown in Fig. 6(b), where the bandgap
is shaded light blue, and defect-state peaks are denoted by red penta-
grams. The associated mode shapes at each defect-state frequency are
plotted in Fig. 6(c), clearly illustrating energy localization in the DRM.
Two main observations can be drawn: (1) Increasing a shifts the
bandgap toward higher frequencies, in agreement with Bragg scattering
in an enlarged unit cell. Remarkably, the overall structure length at a =
75° is less than half that at @ = 20°, yet the lower band-edge frequency
increases only marginally (from 162 Hz to 212.3 Hz). Moreover, the first
and second Bragg bandgaps merge at large « (e.g., a = 75°), producing a
broader attenuation region. This suggests that large a enables compact
designs to achieve wide, low-frequency vibration suppression; (2)
although defect-state frequencies remain clustered near 400 Hz across
all a, the defective beam’s displacement amplitude diminishes as a
grows. To quantify this, we calculate the displacement amplitude of the

11

defective beam at the defect-state frequency wgefect and normalize it to
the result for « = 20°. As shown in Fig. 6(d), the normalized displace-
ment amplitude declines modestly up to @ = 60° (e.g., to 0.82) and then
falls more sharply at larger angles (e.g., to 0.27 at a = 75°). This trend
implies that excessively large a values can weaken energy localization
and hinder defect-state excitation. To give a practical threshold of a, a
standard engineering criterion is applied. For transduction/sensing ap-
plications, the harvested or detected power scales approximately with
the square of the displacement amplitude. Thus, the -3 dB point
(amplitude = 0.707 xreference, i.e. 50% power loss) marks a practical
performance threshold. Taking the defective beam’s peak displacement
at a = 20° as the reference, the threshold a4 is defined as:

Aget ()

Ldeflh) _ 4 707,
Adef(20“)

19

where Agef(am) is the defective beam’s displacement amplitude evalu-
ated at @wgefect and numerical evaluation yields g, = 67.4°. For DRMs
with different geometric or material parameters, the precise threshold
am can be computed from Eq. (19).

4.3. Effect of connecting beam length

In this subsection, the variation of the DRM’s system characteristics
with the connecting-beam length L, is examined. All other parameters
remain as in Table 1. Fig. 7(a) presents a heatmap of the transmittance
versus Ly, where the first, second, and third Bragg bandgaps (shaded
blue) are labeled I, II, and III, respectively. It can be seen that as L, in-
creases, each bandgap shifts toward lower frequencies due to the
enlarged lattice constant. Meanwhile, the bandgaps become narrower,
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Fig. 9. Variation of the normalized vibration amplitude of the defective beam at the defect-state frequency with changing Ls: (a) First-order defect-state; (b) Second-

order defect-state; (c) Third-order defect-state; (d) Fourth-order defect-state.

with a reduced vibration-attenuation strength (the blue shading lightens
with Ly). For example, the first-order flexural bandgap shrinks from
approximately 276.1 Hz-1282.6 Hz at Ly = 0.5 cm to around 125.1 Hz-
174 Hz at L, = 5.5 cm. The red-dotted regions mark the frequency ranges
in which defect modes can emerge. Within both the first and second
band gaps, the defect-state frequencies decrease slightly with Lj.
Notably, for 3 cm < L2 < 4.5 cm, the defect states vanish because Ly
approaches the defective beam length L3 (= 4 cm).

To examine these behaviors in detail, we extract three representative
slices (A, B, and C) from Fig. 7(a) and plot their transmittance curves in
Fig. 7(b). The plots clearly show that the first-order flexural bandgap
progressively narrows, shifts to lower frequencies, and eventually dis-
appears with increasing Ly. To understand how defect-mode localization
evolves across different bandgap orders, Fig. 7(c) depicts the mode
shapes corresponding to the three defect peaks in Fig. 7(b). In all cases,
energy localizes around the defective beam in a dipole-like pattern,
indicating that bandgap order does not alter the fundamental localiza-
tion mechanisms. However, the intensity of localization differs among
cases A-C. Fig. 7(d) quantifies this by comparing the normalized vibra-
tion amplitude of the defective beam (normalized to its amplitude at Ly
= 0.2 cm) at the defect-state frequency for varying L. It is observed that,
for all bandgap orders, the defective-beam amplitude first rises and then
falls as Ly increases. Combining the results in Fig. 7(a), it is evident that
energy localization diminishes as the defect-state frequency approaches
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the bandgap edges and intensifies when the frequency lies near the
bandgap center. In addition, when the defect states fall into the second-
order flexural bandgap, the corresponding mode shape reverses its
phase. Therefore, to achieve optimal energy confinement, L, must be
carefully tuned relative to the overall structure dimensions.

4.4. Effect of defective beam length

To explore how the defective beam length L3 shapes system behavior,
Fig. 8(a) shows a transmittance heatmap with varying Ls. All other pa-
rameters remain as in Table 1. The blue shaded area denotes the first-
order flexural bandgap. It is seen that the bandgap’s location and
width remain essentially unchanged as L3 varies. However, increasing L3
gives rise to multiple, periodically spaced transmission peaks within the
bandgap, corresponding to higher-order localized modes.

To distinguish, these mode branches are highlighted by red circles,
white triangles, orange forks, and blue squares, respectively, which trace
the continuous frequency ranges of the respective defect states. It can be
seen that as L3 increases, all four branches shift significantly toward
lower-frequency regions, reflecting the reduction in effective stiffness
associated with the longer defective beam. These tuning ranges span
almost the entire bandgap and terminate near its boundaries. Properly
designed bandgap region and defective beam length are expected to
produce more low-frequency defect states.
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Table 2
Geometric properties of the prototypes.
Prototype L,(cm) Ly(cm) Ls(cm) a(®) b(cm) h(cm)
1 4 2 2 60 0.5 0.3
2 4 2 4 60 0.5 0.3
3 4 1 15 30 0.5 0.3

Moreover, the appearance of multiple marker sequences along the x-
axis suggests that several defect states coexist within a single bandgap.
To further illustrate this, Fig. 8(b) shows the transmittances extracted at
slices A, B, and C from Fig. 8(a), with colored pentagrams marking the
defect-state peaks. Cases A and B in Fig. 8(b) exhibit two peaks at (173.5,
507.3) Hz and (264.1, 513.2) Hz, respectively, while Case C shows three
peaks at (174.5, 356.4, 607.4) Hz. The corresponding mode shapes
shown in Fig. 8(b) are hereafter referred to as the first- through fourth-
order defect states. Notably, the mode shape associated with the red
pentagram in Fig. 8(b) is consistent with the dipole-like pattern analyzed
in Section 2. As L3 increases, the mode shapes of the defective beam
resemble those of a clamped-clamped beam. This occurs because
lengthening the beam reduces its natural frequencies and compresses
their frequency spacing. When these eigenfrequencies fall within the
bandgap, they become trapped and excited as higher-order defect states.
For example, at L3 = 19.5 cm, the eigenfrequencies are densely packed,
allowing the formation of three distinct defect states.

Next, the influence of L3 on the vibration amplitudes of the four
defect states shown in Fig. 9 is investigated. Based on the SEM, the mode
shapes of the defective beam at each defect-state frequency are obtained
and normalized with respect to the amplitude at Lg = 3.5 cm. It is clear
that as L3 increases, the vibration amplitudes of the defective beam at
the first- through fourth-order defect-state frequencies initially decrease
and then increase, accompanied by a 180° phase reversal. This behavior
suggests that the vibrational localization effect can differ significantly
among defect states of different orders for a fixed L3, and that careful
parameter selection is essential for achieving the desired localization
characteristics.

Building on these insights, a general approach is summarized for
engineering broad, low-frequency defect states. First, tailor the geome-
try of the rhombic metamaterial to reduce its effective stiffness, thereby
lowering the bandgap frequency at a fixed lattice constant; and second,
engineer the defective element to produce densely clustered natural
frequencies, which promotes the formation of multiple localized modes
within the low-frequency bandgap via the higher-order defect state
mechanism. It should be noted that this mechanism is not confined to
the first flexural bandgap but can be readily extended to the higher-
order Bragg bandgaps. However, as higher-order bandgaps occur at
higher frequencies and lie beyond the low-frequency objective of this
study, detailed analyses are omitted.
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5. Experimental validation

In this section, the fabrication of physical prototypes, the experi-
mental measurement procedures, and the subsequent comparison with
theoretical and numerical results are presented to validate the wide low-
frequency defect state effects.

Three prototypes corresponding to the PRM and DRM structures are
fabricated using 3D printing. Their geometric parameters are listed in
Table 2. The prototypes are printed using Esun PLA (E = 3.2 GPa, p =
1000 kg/m>, v = 0.41). The experimental setup is illustrated in Fig. 10
(a). Each prototype is mounted vertically, with one end rigidly fixed to
the shaker fixture to provide a clamped boundary condition, while the
other end left free. A frequency-swept harmonic excitation is generated
by a vibration controller (VibrationResearch, model: VR9500), ampli-
fied via a power amplifier (SignalForce, model: PA30E), and transmitted
to a permanent magnet shaker (Labworks, model: ET-132-2). The
resulting force, applied perpendicular to the surface of the metamaterial,
has a constant acceleration amplitude of 0.5 G and a sweep rate of 60 Hz
per minute, thereby exciting its flexural modes. The input signal is
regulated by the VibrationVIEW 2021 software, while the data are
recorded by the vibration controller. Two high-performance miniature
ceramic accelerometers (PCB piezotronics, model: 352C23) are mounted
at the clamped and free ends using wax. Before use, the accelerometers
are calibrated using a reference standard accelerometer, and their sen-
sitivities are determined to be 4.9 mV/g and 5.4 mV/g, respectively.
With an extremely low mass of only 0.2 grams, these accelerometers
impose minimal mass loading on the structure. To quantify the impact of
the sensor-induced tip mass, Fig. 10(b) shows the DRM transmittance
when a 0.2 g point mass is at the free end (structural and material pa-
rameters as in Fig. 5(c)). Compared with the mass-free counterpart, the
added tip mass has a negligible effect on the DRM’s dynamic response
below 1500 Hz and produces slight downward shifts of the mode fre-
quencies at higher frequencies. Thus, the sensor mass is deemed negli-
gible for our sub-kilohertz defect-state analysis.

The measured transmittance of the PRM, designated as Prototype 1
(Fig. 11(a)), is presented in Fig. 11(b). For comparison, theoretical and
numerical predictions from the SEM and FE models are included, with
the bandgap regions shaded in blue. The experimental results show good
agreement with the predictions in the first-order Bragg bandgap. How-
ever, the second-order bandgap obtained experimentally is narrower
than expected, primarily due to more pronounced damping effects at
higher frequencies and the greater influence of imperfect clamped
boundary conditions on wave interference and diffraction. In addition,
an unexpected transmission peak is observed at 661 Hz within the first
bandgap, as indicated by the red dotted circle in Fig. 11(b). To verify
that this is not related to a defect mode, acceleration responses are
measured at three locations along the PRM under harmonic excitation at
661 Hz. Fig. 11(c) shows the sensor layout, with three accelerometers

Clamped . Tip mass

Transmittance (dB)

Al [——SEM

P 4 |--—- FE (without tip mass)

#|—o— FE (tip mass = 0.2 g)
F-BG

0 500

1000 1500
Frequency (Hz)

2000 2500

Fig. 10. (a) Experimental setup; (b) Comparison of transmittance with and without a tip mass. The tip mass of 0.2 g corresponds to the actual mass of the sensors

(PCB piezotronics 352C23).
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Table 3

Measured and FE-predicted defect-state frequencies for prototypes 2-3.
Prototype f1, sim (Hz) f1, exp (Hz) Afq fo, sim (Hz) f2, exp (Hz) Afy f3, sim (Hz) f3, exp (H2z) Afz
2 511 531.6 3.9% / / / / / /
3 357.7 375.5 4.7% 688.5 741.3 7.1% 1187 1267.8 6.4%

mounted on different connecting beams. To avoid missing a maximum
amplitude because a sensor happened to be placed at a zero-
displacement point, each sensor was tested at the left end, midspan,
and right end of its connecting beam. The measured amplitudes, plotted
in Fig. 11(c), show that the sensor nearest the excitation (i.e., sensor 1)
recorded the largest amplitude and that amplitude decays with distance
from the excitation. This spatial decay is consistent with normal wave
propagation, with large amplitudes near the source that attenuate with
distance, and does not indicate localized wave behavior.

Fig. 12(b) shows the measured transmittance of the DRM with L3 = 4
cm (i.e., Prototype 2, as shown in Fig. 12(b)), which aligns well with the
theoretical and numerical predictions. A distinct transmission peak ap-
pears at 531.6 Hz within the first bandgap, highlighted by the red dotted
circle. This experimentally detected peak closely matches the SEM and
FE predicted peak at around 511 Hz (green dashed circle). The FE-
simulated mode shape corresponding to the predicted peak at 511 Hz
is superimposed as inset B in Fig. 12(b). To further verify that the
experimentally observed peak at 531.6 Hz corresponds to a defect state,
the sensor layout and acceleration responses at three different con-
necting beams under harmonic excitation at this frequency are shown in
Fig. 12(c). It is evident that Sensors 1 and 3, positioned outside the
defective region, record consistently low amplitudes, indicating

effective vibration suppression in the non-defective region. By contrast,
Sensor 2, mounted on the defective beam, shows a strong response
adjacent to the rhombic unit but much smaller amplitudes at the beam
midspan. This spatial pattern matches the defect-mode shape in inset A
of Fig. 12(b), confirming that vibrational energy is localized around the
structural defect at 531.6 Hz. Moreover, the expected defect states
within the second-order Bragg bandgap prove difficult to observe
experimentally. We attribute this mainly to the damping of the PLA
used, which typically has a loss factor of 0.02-0.04 [99]. Since the
damping effect increases with frequency [100], resonance amplitudes at
high frequencies are substantially attenuated, rendering the
high-frequency defect states effectively unobservable. To achieve defect
states above a few kilohertz, fabrication using lower-damping materials
such as steel or aluminum is recommended. In addition, using a slower
excitation sweep rate to avoid missing narrow peaks, and minimizing
boundary friction with a stiff metal fixture and low-friction contact pads
also help improve peak visibility.

Finally, prototype 3 is tested to examine multiple higher-order defect
modes within the low-frequency bandgap. Its dimensions are optimized
based on the parametric study in Section 4 to ensure strong energy
localization. The results are shown in Fig. 13. The green dashed circles in
Fig. 13(b) indicate the second-, third-, and fourth-order defect states,
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and their corresponding mode shapes are illustrated in panels A-C of
Fig. 13(c). Three distinct defect-state peaks appear clearly in the
experimental transmittance, confirming the validity of the higher-order
defect state concept proposed in this study. Table 3 summarizes the
measured defect-state frequencies fey, and the FE-predicted frequencies
fsim for prototypes 2 and 3. Subscripts 1-3 denote the defect states in
order of increasing frequency. The difference between experiment and
simulation is quantified by the relative error Af = |fexp — fiim| /fexp X
100%, validating the proposed DRM design.

The above experimental findings not only verify the theoretical and
numerical predictions but also indicate the practical feasibility of the
proposed DRM in real-world applications. With its lightweight yet
robust lattice configuration, the DRM can be integrated into structural
components such as sandwich cores, load-bearing panels, or embedded
inserts in smart infrastructures. The multi-band low-frequency defect
modes observed here match typical ambient vibration frequencies in
engineering infrastructures, such as transport and aerospace systems. By
placing piezoelectric transducers at the defect sites, the DRM can serve
simultaneously as a structural element and an energy harvesting or
sensing device. Building on these results, future work will explore the
fabrication and dynamic performance of such multifunctional structures
under realistic operating conditions.

6. Conclusions

This study tackles the challenge of broadband low-frequency vibra-
tion localization through the design of truss-based lattice metamaterials.
A novel rhombus-shaped metamaterial with a single-point defect is
proposed by selectively modifying the lengths of the connecting beams
between rhombic units. The rhombic geometry reduces the structure’s
effective stiffness without altering the lattice scale, enabling low-
frequency defect modes. Building on this, the concept of higher-order
defect states is introduced, achieved by tuning multiple natural fre-
quencies of the defective element into the bandgap range. These modes
are captured via finite element-based band structure analysis. To
enhance computational efficiency, a dynamic model based on the
spectral element method is developed for accurate harmonic response
prediction.

This work yields several valuable conclusions: First, defect states are
highly sensitive to vibration polarization. Longitudinal waves interact
weakly with the periodic lattice, making them difficult to localize.
Second, defect modes can be generated within the lower-frequency
Bragg bandgaps, with energy localization strength influenced by the
rhombic angle and connecting beam length. Third, higher-order defect
states are primarily governed by the intrinsic modes of the defective
beam, independent of the bandgap order, and correspond to successive
vibration modes of a clamped-clamped beam. Fourth, low-frequency
higher-order defect states are experimentally validated for the first
time, showing good agreement with both theoretical and numerical
predictions. However, starting from the second-order bandgap, signifi-
cant damping effects suppress defect-mode emergence, highlighting the
importance of targeting low-frequency regions in defective meta-
material design.

Overall, this research presents a compact metamaterial design
strategy for achieving multiple localized modes in the low-frequency
regime, offering a new pathway for advanced vibration control and
wave manipulation in engineering applications.
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