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Abstract
Defective phononic crystals (PnCs) and metamaterials have gained considerable attention for
applications in waveguiding, energy harvesting, and sensing. Despite the increasing interest,
traditional defective PnCs/metamaterials are typically restricted to single or dual defect bands,
with narrow tunable ranges constrained by the bandgap width. Instead of structural defects, this
study introduces an approach to achieve arbitrary decoupled defect modes in defective
piezoelectric metamaterial via electrically controlled defects, enabling flexible wave
localization across multiple frequency bands. Specifically, we design multiple bandgaps in
piezoelectric metamaterials by paralleling unit cells with higher-order resonant circuits that
include ‘current-flowing’ branches and consequently propose a multi-bandgap decoupling
tuning method. Based on this, a conjecture that adjusting the inductance of a single cell can
produce defect bands in all bandgaps is proposed. To accurately predict defect bands, harmonic
responses, and wave modes, the spectral element method, incorporating the Timoshenko beam
unit, is used to describe the dynamic properties of the metamaterial, which are further validated
by finite element analysis. The influence of electrical open-circuit and short-circuit conditions
on defect-mode frequencies, alongside the frequency-dependent properties of the energy
localization effect are investigated. Results confirm that an arbitrary number of defect bands at
specific frequencies can be achieved by tuning the defective cell’s electrical impedance, with
each band’s tunability and corresponding energy-localized behavior functioning independently.
The proposed approach uniquely enables multi-band wave localization with a single-point
defect, offering a significant advantage over conventional methods requiring multiple structural
defects, and opening new avenues for programmable wave localization in complex vibration
scenarios.
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1. Introduction

Manipulating the amplitude/propagation direction of waves
has been a fundamental goal in engineering structures [1].
Phononic crystals (PnCs) [2, 3], designed from artificial
microstructural units, have opened new frontiers in wave-
based functional materials. The unconventional approach of
controlling wave propagation through Bragg scattering (BS)
bandgap shows great promise for applications such as vibra-
tion suppression [4, 5], wave filtering [6, 7], sensing and
detection [8, 9], and elastic mirrors [10]. Recent developments
in periodicity theory have led to the emergence of metamater-
ial, enabling the formation of local resonance (LR) bandgaps
at lattice scales well below the wavelength [11], and advancing
subwavelength control of elastic/acoustic waves.

An important branch of wave manipulation in
PnCs/metamaterials is spatial localization and local wave
energy amplification through defects [12, 13]. It is known
that bandgap in PnCs/metamaterials prevents the transmis-
sion of incident waves. However, introducing defects breaks
the perfect periodicity, thereby disrupting the bandgap in cer-
tain frequency ranges and creating passbands (defect bands)
that allow waves of specific frequencies to propagate. With
the bandgap still restricting wave transmission in defect-free
regions, waves at specific frequencies ‘flow’ into the defect,
forming standing waves and amplifying the local amplitude—
a phenomenon known as defect mode [14]. Defect modes in
PnCs and metamaterials are typically formed in BS bandgaps
and LR bandgaps, respectively, and both have been widely
studied.

In PnCs, defects can be created by altering the geometric
or material properties of specific unit cells [15]. Shelke et al
[16] studied the ultrasonic waveguide properties of a defective
PnC consisting of a square array of cylindrical rods in an air
matrix by removing some of the cylindrical rods. Sound waves
at defect-mode frequencies can propagate along defects with
minimal loss, demonstrating potential for narrowband filter-
ing. Similarly, Shao et al [17] investigated the energy amp-
lification properties of elastic waves in cylindrical rod arrays
containing line defects, illustrating its application for energy
harvesting. Moving beyond simple removal of units, Park et al
[18] designed a defective PnC with an octagonal hole in each
unit cell. The intricate geometry of cells provides greater flex-
ibility for defect design, leading to improved energy ampli-
fication in the defect region. Recent advancements in intelli-
gent algorithm-assisted inverse designs have further custom-
ized wave localization behavior in defective PnCs [19–22].
It is worth noting that defect-mode frequencies in defective
PnCs are typically in the upper kilohertz range due to the
BS mechanism [23], limiting their application to the high-
frequency spectrum. Metamaterials, however, provide a solu-
tion. Generally, defects in metamaterials are introduced by

modifying the resonance properties of the unit cells, lead-
ing to defect modes within the LR bandgap, thereby signific-
antly reducing their formation frequency. Oudich and Li [24]
presented a defective metamaterial plate placed in an acoustic
field, featuring an array of mass-spring resonators integrated
into the plate. By modifying the properties of selected reson-
ator units, a defect mode is produced within the LR bandgap
around 500 Hz. Katch et al [25] examined the effect of vary-
ing partial resonators’ stiffness on the defect mode properties
in metamaterial beams with periodically arranged mass-spring
resonators. The findings are valuable for applications such as
structural defect detection. In addition to spring-mass resonat-
ors, other resonators with defects, such as elastically wrapped
scatterers [26], Helmholtz cavities [27, 28], and piezoelectric
resonance units [29–31], have been explored to induce defect
modes in metamaterials, all shown effective low-frequency
spatial localization.

Understanding that defect bands in PnCs/metamaterials
are typically flat, exhibiting narrowband characteristics due
to their near-zero group velocity [32, 33]. The single defect
mode created in the abovementioned studies is subop-
timal for practical applications with broadband spectrum.
To address this, researchers have proposed various design
strategies to expand the operational frequency of defect
modes, which can be broadly classified into two categories.
The first category focuses on creating multiple defect modes
in PnCs/metamaterials. For instance, Jo et al [34] proposed
double-defect PnC with circular hole-type unit cells. Two
coupled defect bands are formed within the BS bandgap by
leveraging the splitting effect of the defect modes in a double-
defect configuration, where the spatial spacing between the
defects influences both defect bands. Further, they investig-
ated PnCs with widely spaced double defects, incorporat-
ing a gradient in the cell size around each defect to suc-
cessfully decouple the two defect modes [35]. However,
the number of defect modes that can be created is limited,
as excessive structural defects would destroy the bandgap.
Moreover, the defect modes created in this way are all formed
within the same bandgap, restricting their operational band-
width. Another effective approach, beyond increasing the
number of structural defects, is to skillfully form defect
modes within multiple bandgaps. Xiao et al [36] designed a
Helmholtz resonator-based defective metamaterial, success-
fully generating defect modes within the two bandgaps formed
by the mechanical and acoustic resonances of Helmholtz
resonators.

The second category focuses on achieving tunable/pro-
grammable defect modes to address broadband vibrational
challenges. Specifically, by integrating materials such as
piezoelectric materials [37], electromagnetic materials [38],
and thermosensitive materials [39] into PnCs/metamaterials,
their multi-field coupling properties are exploited to modify

2



Smart Mater. Struct. 34 (2025) 035015 Y Jian et al

lattice geometry and material features and enable defect band
tunability. For instance, Deng et al [40] integrate magneto-
strictive rods within defective PnCs to achieve defect band
frequency shifts of approximately 1% and 5%, respectively.
Jo et al [41] attached a piezoelectric patch shunted with neg-
ative capacitance circuits at the defect in PnCs, utilizing the
stiffness adjustment capability of the negative capacitance
circuit to achieve tunable defect bands. Thomes et al [42]
examined the spatio-temporal tunability of defect modes in
piezoelectric metamaterials with shunted inductive circuits.
The authors also investigated the rainbow effect of defect
modes in grading piezoelectric metamaterials, which exhibit
frequency-space selective properties [43]. Although the above
approaches allow for some tunability of defect bands, a major
limitation is that the defect bands are formed in a single
bandgap and their tuning range is limited by the bandgap
width.

These research gaps motivate us to explore whether it is
feasible to achieve arbitrary decoupled defect modes using
the tunable properties of piezoelectric metamaterials. Here,
‘arbitrary’ refers to freely specifying both the number and
frequency of defect modes, while ‘decoupling’ allows inde-
pendent tuning of each mode’s frequency and wave localiza-
tion, enabling multiple defect modes to function without inter-
ference. To this end, we propose a scenario where a single
piezoelectric defect can induce multiple defect bands in dif-
ferent LR bandgaps. A higher-order resonant circuit compris-
ing current-flowing branches is employed to generate multiple
bandgaps in piezoelectric metamaterials. Given the narrow-
band properties of defect bands, we develop an spectral ele-
ment method (SEM) analytical model, based on Timoshenko
beam theory and Hamilton’s principle, to capture the bandgap
behavior accurately. Leveraging negative stiffness theory
and the open-circuit features of the current-conducting
branches, we establish a framework for decoupling bandgaps,
proving a basis for independently tuning multiple defect
bands.

The key distinction of this design from existing approaches
lies in its circuit-controlled defect bands, enabling arbit-
rary multi-band wave localization with only a single struc-
tural defect. It overcomes traditional methods that rely on
structural defects, thereby greatly enhancing the applicabil-
ity of defect modes. Furthermore, the programmable nature
of piezoelectric elements suggests that future integration
with digital circuits and sensing modules could enable the
proposed design to adaptively respond to environmental
changes, allowing for customized control over the number,
frequency, and spatial positioning of wave localization. This
advancement offers a novel solution for wave guiding, sens-
ing, and structural health monitoring in complex vibration
environments.

The paper is organized as follows: section 2 details the
structure and circuit configuration of the defective piezo-
electric metamaterials. section 3 outlines the methodology
for defect band and harmonic response analyses using the

SEM based on Timusinko theory. Section 4 presents a
multi-bandgap decoupling tuning method for the higher-
order resonant circuits. Section 5 commences with a com-
prehensive analysis of the defect modes induced by a first-
order resonant circuit, followed by a demonstration of the
decoupling of the double defect modes under the higher-
order resonant circuits. Furthermore, additional examples
are provided to showcase the arbitrary decoupled defect
modes. Finally, concluding remarks are summarized in
section 6.

2. Design of defective metamaterials with arbitrary
decoupled defect modes

The proposed defective metamaterials with arbitrary
decoupled defect modes are comprised of one-dimensional
piezoelectric metamaterial beams incorporating piezoelec-
tric defects. Section 2.1 describes the physical structure
of the defective piezoelectric metamaterial. The deliber-
ate modification of the circuitry in a unit cell introduces a
point defect in the metamaterial. Section 2.2 presents the
electrical circuit configuration and highlights the advant-
ages of using the higher-order resonant circuit consisting
of ‘current-flowing’ branches to create multiple decoupled
bandgaps, which are the basis of arbitrary decoupled defect
modes.

2.1. Overview of the defective piezoelectric metamaterial

Figure 1 shows the schematic of the defective piezoelectric
metamaterial beam with arbitrary decoupled defect modes.
This elastic beam consists of a three-layer structure in which
two piezoelectric layers, polarized in the same direction along
the z-axis, cover the top and bottom surfaces of the substrate
layer. The repeating pattern consisting of k unit cells (unit
cells are distinguished by j, and j = 1, 2, …, k) is realized
by periodically arranged electrode pairs on the piezoelectric
layers. Each electrode pair is connected to an external reson-
ant circuit with a general impedance Zj(s), which describes the
relation between voltage vp(t) and current ip(t). Consequently,
unit cells are electrically independent, but the boundaries of
adjacent cells share the same mechanical degrees of free-
dom (DOFs). In this study, the periodicity of metamaterial is
intentionally broken by modifying the general impedance in
the jth unit cell, resulting in a defect with energy-localized
behavior, as indicated in figure 1(a). Figure 1(b) shows the
close-up view of the unit cell. In defect-free cells, electrode
pairs are connected in parallel with higher-order resonant cir-
cuits, whereas in the defective cell (indicated by the yellow
electrode), they are connected in parallel with a first-order
resonant circuit. The material and geometric properties of
the defective piezoelectric metamaterial beam are given in
table 1.
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Figure 1. (a) Schematic of a defective piezoelectric metamaterial with arbitrary decoupled defect modes; (b) an enlarged view of the unit
cell in which the two electrode pairs are connected in parallel with a resonant circuit. In this case, defect-free cells are connected to a
higher-order resonant circuit, while the defective cell is connected to a first-order resonant circuit.

Table 1. Material and geometric properties of the defective piezoelectric metamaterial beam.

Substrate layer—Brass

Density ρs 7165 kg m−3 Cell length d 30 mm
Young’s modulus Es 100 GPa Cell width b 20 mm
Shear modulus Gs 40 GPa Cell thickness hs 1.5 mm

Piezoelectric layer—PZT-5

Density ρp 7800 kg m−3 Cell length d 30 mm
Young’s modulus 1

/
SE11 66 GPa Cell width b 20 mm

Shear modulus 1
/
SE55 21 GPa Cell thickness hp 0.4 mm

Permittivity εT33 15.93 nF m−1 Piezoelectric constant d31 −19 × 10−9 C/N

2.2. Higher-order resonant circuit for generating multiple
decoupled bandgaps

Analogous to the tuned mass damper [44], the jth piezoelectric
element with a first-order resonant circuit (typically repres-
ented by a resistor-inductor series circuit) acts as an elec-
tromechanical resonator. The interaction between these peri-
odically arranged electromechanical resonators and the sub-
strate creates LR bandgaps. The diagram of the first-order
resonant circuit with impedance Zfj (s) = R+ sL is shown in
figure 2(a), where the piezoelectric element is modeled as a
voltage source Vp in series with a capacitor Cp. It is known
that by intentionally varying the inductance of a certain cell,
a defect mode induced by piezoelectric defect emerges within
the bandgap, with its tunability constrained by the bandgap
width [42]. However, this single defect mode limits its applic-
ations as bandpass filters/sensors/energy harvesters in broad-
band vibration scenarios. To extend the operating bandwidth
of defect mode, we propose that defect modes can be formed in
multiple bandgaps by introducing piezoelectric defects asso-
ciated with multiple resonant frequencies in the unit cell.
This is achieved by connecting a first-order resonant circuit
to the defective cell to introduce piezoelectric defects, while
higher-order resonant circuits are connected to the defect-
free cells to generate multiple bandgaps, as demonstrated in
figure 1(b).

In this study, a higher-order resonant circuit [45] consist-
ing of current-flowing branches (orange parts) and resonance

branches (green parts), named C-F higher-order resonant cir-
cuit for brevity, is utilized to generate multiple decoupled
bandgaps. The diagram of the C-F higher-order resonant cir-
cuit is shown in figure 2(b). Compared to conventional higher-
order resonant circuits, such as the one used in [46], a signi-
ficant advantage of this circuit lies in the decoupling of dif-
ferent orders of electrical resonance through the incorporation
of current-flowing branches, which enables each resonance

branch to function independently. To be specific, when the
inductor in the ith current-flowing branch is tuned to L̃i =
1
/(

ω2
i Ci

)
, i = 1,2, . . . ,n, the impedance Zcfi (s) of the ith

current-flowing branch approaches zero (i.e. it behaves at a
short circuit) at the operating frequency ωi. Conversely, at
other frequencies, the ith current-flowing branch acts approx-
imately as an open circuit. In other words, the current-
flowing branches act as a ‘switch’, ensuring that each reson-
ant branch operates exclusively around its designed frequency.
As an example, we chose ω = 500 ×2π rad s−1 to illustrate
how the impedance magnitude

∣∣Zcf (s)∣∣ varies with frequency
to demonstrate the switching characteristics of the current-
flowing branch, as shown in figure 2(d). It can also be observed
from the figure that as the capacitance decreases, the switch-
ing characteristics become more pronounced. Another advant-
age of this switching characteristic is that, due to the decoup-
ling of the individual resonant branches, the other branches
can continue to operate normally even when the inductance of
one branch is perturbed. Applying the electrical-mechanical
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Figure 2. (a) The diagram of the first-order resonant circuit; (b) the diagram of the C-F higher-order resonant circuit with n branches; (c)
simplified circuit after integrating inductors L̃ and L̄ into L

∗
; (d) variation of the impedance magnitude of the current-flowing branch with

frequency; (e) the equivalent mechanical model of the circuit under electrical-mechanical analogy.

analogy, the C-F higher-order resonant circuit can be regarded
as a multi-DOF vibration absorber consisting of a number of
spring-mass blocks connected in parallel, each of which can be
individually tuned, as shown in figure 2(e). In this analogy, a
piezoelectric-beam element is equated by a mass ms, stiffness
ks, and damping cs [46].

Consequently, the method of obtaining multiple independ-
ent bandgaps becomes straightforward: By tuning L̄i in the
ith resonance branches to L̄i = 1

/(
Ω̄2
i Cp

)
, multiple bandgaps

associated with the desired resonant frequencies, i.e. Ω̄1, Ω̄2,
…, Ω̄n, can be generated. To simplify this circuit, inductors L̃i
and L̄i in the ith branch can be integrated into a single inductor
L∗i =

Cp+Ci
Ω̄2
i CpCi

, as shown in figure 2(c). The total shunt branches

impedance, denoted by Zcj (s), of the C-F higher-order reson-
ant circuit containing n branches in the jth unit cell can be
expressed as:

Zcj (s) =
1

n∑
i=1

sCi
1+sRiCi+s2L∗i Ci

. (1)

In section 4, we will further compare the differences in
bandgap tuning between the C-F higher-order circuit and
its conventional counterpart, and propose a multi-bandgap
decoupling tuning method.

3. Analytical approaches for defect bands

This section elaborates on the mathematical formulation to
facilitate the analysis of piezoelectric metamaterial with a
point defect. It commences with introducing the governing
equations for the piezoelectric-beam element shunted with the

C-F higher-order resonant circuit. Subsequently, the dynamics
model of the proposed defective piezoelectric metamaterial is
developed using the spectral transfer matrix method (STMM)
to perform band structure analysis and the SEM to compute
harmonic responses.

3.1. Governing equations

The defect band is normally a narrow passband within
bandgaps, necessitating precise modeling to accurately cap-
ture its frequency range. Therefore, Timoshenko’s beam the-
ory, which accounts for structural shear deformation, is adop-
ted to enhance the predicting accuracy of the defect bands.

The linear constitutive equation describing the elastic and
electrostatic relationships of the piezoelectric materials takes
the forms [47]: σp

κp
E3

 CD11 0 −h31
0 CD55 0

−h31 0 εS33

=

 εp
γp
D3

 (2)

where σp and εp denote the longitudinal stress and strain in the
x-direction, while κp and γp denote the shear stress and strain,
respectively. E3 and D3 denote the dielectric field and elec-
trical displacement in the z-direction, respectively.CD11 andC

D
55

refer to the elastic stiffness, h31 is the piezoelectric constant.
εS33 is the dielectric permittivity at a constant strain. Notably,
equation (2) can be reformulated to express strain as a function
of stress, resulting in another set of coefficients [48]:

SE11 = 1
/
CD11 + d231ε

T
33, S

E
55 = 1

/
CD55, ε

T
33 = εS33 + d231

/
SE11,

d31 = h31
/(

εT33C
D
11

)
(3)
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where SE11 and S
E
55 are elastic compliance constants, εT33 is the

dielectric permittivity at constant stress, and d31 is the piezo-
electric constant.

According to equation (2), the relationship between stress
and strain in piezoelectric materials is as follows:

piezoeletric material

{
σp = CD11εp− h31D3

κp = CD55γp

substrate material

{
σs = Esεs
κs = Gsγs

. (4)

The longitudinal and shear stress-strain relationships for
the substrate materials are also given in equation (4), where
Es and Gs are the elastic stiffness constants. Additionally,
under the small deflection assumption, the strain components
in piezoelectric and substrate materials can be expressed in
terms of the transverse and rotational displacements, w (x, t)
and ϕ (x, t), as follows:

εp =−∂ϕ (x, t)
∂x

y

γp = ϕ (x, t)− ∂w(x, t)
∂x


εs =−∂ϕ (x, t)

∂x
y

γs = ϕ (x, t)− ∂w(x, t)
∂x

(5)

To derive the governing equation of the piezoelectric-
beam element, the extended Hamilton’s principle is utilized
as follows [49]:

t2ˆ

t1

(δTkinetic − δVpotential + δWvirtual)dt= 0 (6)

where Tkinetic andVpotential represent the total kinetic and poten-
tial energy, and δWvirtual denotes the virtual work done by
the non-conservative forces. δ is the variational operator, and
δTkinetic is denoted as the variant of Tkinetic. The total potential
energy can be written as

Vpotential =
1
2


ˆ

Vsub

(σsεs+κsγs)dVsub +

ˆ

Vpiezo

(σpεp+κpγp

+E3D3)dVpiezo

 (7)

where Vsub and Vpiezo are volume integral operators for the
substrate and piezoelectric materials, respectively. The total
kinetic energy is expressed as follows,

Tkinetic =
1
2

dˆ

x=0

ρA

(
∂w(x, t)

∂t

)2

+

dˆ

x=0

ρI

(
∂ϕ (x, t)

∂t

)2
dx

(8)

where ρA = b(ρs +2ρp), ρI = ρsIs +2ρp(Ip +bhphpc). Is =
bh2s

/
12 and Ip = bh2p

/
12. hpc = ((hs+ hp)/2)

2. ρs and ρp
denote the density of the substrate and piezoelectric materi-
als. For the bimorph piezoelectric-beam element under con-
sidering in-parallel connection configuration, the virtual work

δWvirtual done by the external force, moment, and applied elec-
tric field, is given by

δWvirtual =

dˆ

x=0

F̃δw(x, t)dx+

dˆ

x=0

M̃δϕ (x, t)dx

+ 2

dˆ

x=0

bvp (t)δD3dxdx (9)

where F̃ and M̃ denote the external force and moment.
vp(t) is the voltage across the piezoelectric elements.
Substituting equations (4), (5), (7)–(9) into Hamilton’s prin-
ciple equation (6), and temporally ignoring the F̃and M̃ terms,
the governing equations of the piezoelectric-beam element
are [50]:

ρA
∂2w(x, t)

∂t2
+GA

[
∂ϕ (x, t)

∂x
− ∂2w(x, t)

∂x2

]
= 0

ρI
∂2ϕ (x, t)

∂t2
+GA

[
ϕ (x, t)− ∂w(x, t)

∂x

]
−EI

∂2ϕ (x, t)
∂x2

= 0

hpch31
εS33

∂ϕ (x, t)
∂x

+
vp (t)

hpεS33
+D3 = 0

(10)

where EI= EsIs+ 2CD11 (Ip+ bhphpc)− 2bhphpch231
/
εS33 and

GA= bhsGs+ 2bhp
/
SE55. For the bimorph piezoelectric-beam

element in a parallel connection configuration, as shown in
figure 1(b), the relationship between charge and electric dis-
placement is given by:

q(t) = 2b

dˆ

x=0

D3dx. (11)

Substituting equation (11) into the third expression of
equation (10), and combining it with the relation ip (t) =

dq(t)
dt ,

the coupled electric field-displacement governing equation is
further expressed as

ip (t)+

[
Cp
dvp (t)
dt

− θ

(
∂ϕ (d, t)

∂t
− ∂ϕ (0, t)

∂t

)]
= 0 (12)

where Cp = 2εS33bd
/
hp is the inherent capacitance of the

piezoelectric element, and θ = 2bhpcd31
/
SE11is the elec-

tromechanical coupling coefficient.

3.2. Piezoelectric beam spectral element (PBSE)

In this subsection, the PBSE of the piezoelectric metamater-
ial with C-F higher-order resonant circuits is developed by the
SEM. The PBSEwith nodes 1 and 2 is shown in figure 3, where
W1, W2 and Φ 1, Φ 2 denote the transverse and rotational dis-
placements at nodes 1 and 2, respectively, while M1, M2, and
Q1,Q2 represent the bending moment and shear force at nodes
1 and 2, respectively.
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Figure 3. Piezoelectric beam spectral element in the local
coordinate system.

Subsequently, the dynamic behavior of the metamaterial
can be obtained by assembling the PBSE. The SEM is particu-
larly suitable formodeling periodic structures such asmetama-
terials due to its advantages of reduced element numbers and
high accuracy of frequency-domain results [51].

The general solutions to the governing equations
equation (12) can be assumed by{

w(x, t)

ϕ (x, t)
=

{
W(x,ω)eiωt

Φ (x,ω)eiωt
(13)

whereW(x,ω) andΦ (x,ω) are the spectral components of the
transverse and rotational displacements of the PBSE, respect-
ively. ω is the circular frequency. Substituting equation (13)
into the first two expressions results in the governing equation
in the frequency domain,

−ω2ρAW(x,ω)+GA

(
dΦ (x,ω)

dx
− d2W(x,ω)

dx2

)
= 0

−ω2ρIΦ (x,ω)+GA

(
Φ − dW(x,ω)

dx

)
−EI

d2Φ (x,ω)
dx2

= 0

(14)

Assuming that the general solutions ofW(x,ω) andΦ (x,ω)
take the forms [52]:{

W(x,ω) = e(x,ω)B

Φ (x,ω) = e(x,ω)Br
(15)

where

e(x,ω) =
[
eik1x,eik2x,e−ik1x,e−ik2x

]
B= [B1,B2,B3,B4]

T

Br = [r1B1,r2B2,−r1B3,−r2B4]
T

.

By substituting equation (15) into equation (14),
and rearranging the resulting expression in the mat-
rix form and seeking the non-trivial solutions of
the coefficient matrix, a characteristic equation is
derived, allowing for determining the wavenumber kp =

√
2
2

√(
ρI
ρA + EI

GA

)√
ω2ρA
EI − (−1)p

√(
ρI
ρA + EI

GA

)2
ω2ρA
EI − 4ω2ρI

GA + 4

and coefficient rp =
i
(
k2p−

ω2ρI
GA

)
kp

, where p = 1 or 2. The nodal

displacement and rotational angle can be calculated by sub-
stituting the nodal coordinates into equation (15), as given
below:

d=


W1

Φ 1

W2

Φ 2

=


W(0,ω)

Φ (0,ω)

W(d,ω)

Φ (d,ω)

=H(ω)B (16)

where H(ω) is the coefficient matrix.
The shear Q and bending moments M distributed along

the Timoshenko beam can be expressed as functions of the
spectral components W(x,ω) and Φ (x,ω), respectively, as
follows:  Q= GA

[
∂W(x,ω)

∂x −Φ (x,ω)
]

M= EI∂Φ(x,ω)
∂x

(17)

Note that the voltage induced by the piezoelectric effect
generates an additional inherent moment Mp = θVp [53],
whereVp is the spectral component of the voltage of the PBSE.
Therefore, the total bending moment of the PBSE is given by

⌢

M=M+Mp =M+ θVp. (18)

Assuming that the general solutions for the voltage and
current in equation (12) are vp(t) = Vpeiωt and ip(t) = Ipeiωt,
respectively, and substituting these into equation (12), the
electromechanical coupling equation can be transformed into
frequency domain as follows:

Ip+ iωCpVp− iωθ [Φ (d)−Φ (0)] = 0. (19)

Note that the voltage–current relationship is Vp = IpZ(ω),
where Z(ω) is the general impedance. Equation (19) can be
rewritten as

Vp =
iωθ [Φ (d)−Φ (0)]

iωCp+ 1
Z(ω)

. (20)

When different external circuits are considered, Vp var-

ies, resulting in different
⌢

M in equation (18). For example, by
substituting equation (20) into equation (18) and considering
the impedance Zc(ω) of the C-F higher-order resonant circuits

given in equation (1), the total bendingmoment
⌢

M of the PBSE
can be calculated as follows

⌢

M= EI
∂Φ (x)
∂x

+
iωθ2 [Φ (d)−Φ (0)]

iωCp+
n∑

i=1

(
iωCi

1+iωRiCi−ω2L∗i Ci

) . (21)

Similar to equation (16), the nodal forces can be obtained
by substituting the nodal coordinates to equations (17)
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and (21)

f=


Q1

M1

Q2

M2

=


−Q(0)

−
⌢

M(0)

Q(d)
⌢

M(d)

= G(ω)B. (22)

By relating equations (16) and (22), the relation between
the nodal displacement and force can be obtained as

f= S(ω)d= G(ω)H−1 (ω)d (23)

where S(ω) represents the frequency-dependent dynamics
stiffness matrix of the PBSE.

3.3. Spectral transfer matrix method

Band structure, which describes the relation between the cir-
cular frequency ω and the wavenumber q, plays an important
role in characterizing the wave propagating properties in peri-
odic structures [54]. In this subsection, we employ the STMM
to derive the band structure of the piezoelectric metamaterial
with arbitrary decoupled defect modes. First, equation (23) is
rewritten as: [

fL
fR

]
=

[
SLL SLR
SRL SRR

]
︸ ︷︷ ︸

S(ω)

[
dL
dR

]
(24)

where the subscripts L and R of f and d refer to the left and
right end nodes of the PBSE, respectively, in which dL =
[WL ΦL]

T and dR = [WR ΦR]
T. The dynamics stiffness mat-

rix S(ω) is divided into four 2 × 2 submatrices. To accurately
capture the defect bands, multiple PBSEs, including thosewith
defective configurations, should be assembled end-to-end. The
assembled elements are then treated as a new spectral element,
referred to as the supercell PBSE. By using the finite element
assembly concept, the relation between the nodal forces and
displacements of the supercell PBSE can be derived as:fLfI

fR

=

 SLL SLI SLR
SIL SII SIR
SRL SRI SRR


︸ ︷︷ ︸

SS(ω)

dLdI
dR

 (25)

where the subscript I denotes the internal nodes of the super-
cell PBSE. SS(ω) denotes the supercell dynamic stiffness mat-
rix, and the dimensions of the submatrices SLI, SIL, SII, and SIR
depend on the number of internal nodes. For example, when
the supercell PBSE contains two PBSE, there is an internal
node that results in the dimension of submatrices being 2× 2.
Since the dispersion relation calculation considers only apply-
ing the Floquet periodic boundary condition at the left and
right end nodes of the supercell PBSE, while the internal nodes

are unconstrained (i.e. f I = 0), one can obtain the supercell
condensed dynamic stiffness matrix SSC(ω):[

fL
fR

]
=

[
SLL−SLIS

−1
II SIL SLR−SLIS

−1
II SLR

SRL−SRIS
−1
II SIL SRR−SRIS

−1
II SIR

]
︸ ︷︷ ︸

Ssc(ω)

[
dL
dR

]

(26)
in which SSC(ω) can be rewritten as a matrix consisting of four
2 ×2 submatrices

SSC (ω) =
[
SSCLL SSCLR
SSCRL SSCRR

]
. (27)

To calculate the band structure, the supercell condensed
dynamic stiffness matrix should be converted to a transfer mat-
rix. According to the method in [55], the transfer matrix T(ω)
can be derived as:

T(ω) =

[
−
(
SSCLR

)−1
SSCLL −

(
SSCLR

)−1

SSCRL−SSCRR
(
SSCLR

)−1
SSCLL −SSCRR

(
SSCLR

)−1

]
. (28)

The transfer matrix T(ω) describes the dynamics of the
left and right nodes of a beam element in the form of uR =
T(ω)uL, where uTL =

[
dL fL

]T
, and uTR =

[
dR fR

]T
.

The band structure, i.e. the diagram of wavenumber q versus
ω, can be calculated by solving the expression [56]:

∣∣T(ω)− eiqdI
∣∣= 0 (29)

where I is the unit matrix. Note that the relation between the
real part of q and ω describes the propagating wave and the
range of ω values that yield no real solutions for q corresponds
to the bandgap.

In addition, to investigate the dynamics behavior of the
defective piezoelectric metamaterial with finite unit cells, the
harmonic response of the proposed metamaterial beam at the
center point (along the x-axis) is calculated under clamped-
clamped boundary conditions, which are more suitable for
demonstration of the vibration energy localization effect. To
be specific, the left and right end of the piezoelectric metama-
terial beam is subjected to a 1 N force, while the rotation dis-
placement of these two ends is constrained to zero. The har-
monic response τ of the defective piezoelectric metamaterial
beam at the center point is defined as

τ = 20log10 (|W(kd/2,ω)/W(0,ω)|) (30)

where W (0, ω) is the transverse displacement at the left end,
determined by applying the clamped-clamped boundary con-
ditions to equation (25) and subsequently solving the cor-
responding matrix equation. W (kd/2, ω) is the transverse
displacement at the center point of the metamaterial beam,
obtained by substituting the coefficients from the previous step
into equation (15).
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4. Multi-bandgap decoupling tuning method

This section focuses on presenting a multi-bandgap decoup-
ling tuning method based on C-F higher-order resonant cir-
cuits, which provides a foundation for generating multiple
defect modes with independent tunability. To facilitate com-
parison and highlight the advantages of the proposed method,
we first introduce a conventional higher-order resonant circuit.

The diagram of a conventional high-order resonant circuit
[46] used for generating multiple bandgaps in a piezoelectric
metamaterial is shown in figure 4(a). The resistor-inductor-
capacitor loops Ri-Li-Ci, i = 2, 3, …, n, (orange part in
figure 4(a)) increase the DOF of the electromechanical reson-
ator, contributing to additional bandgaps. For this higher-order
resonant circuit, the total shunt branches impedance Zhj (s)
with n Ri-Li-Ci loops in the jth unit cell can be expressed by
Laplace form as:

Zhj (s) =
1

1
1

1

...


1

1

sLn−1+Rn−1+
sLn+Rn

1+sCnRn+s2LnCn

+sCn−1
+Rn−2+sLn−2 .

. .
+sC3

+R2+sL2
+ sC2

+R1 + sL1 (31)

As shown in figure 4(b), this conventional higher-order res-
onant circuit can be equivalently represented as a multi-DOF
vibration absorber using the electrical-mechanical analogy.
Subsequently, we will derive the bandgap tuning expressions
for both circuit configurations shown in figures 2(c) and 4(a),
respectively.

Based on the theory of negative bending stiffness, the
analytical expressions of bandgap bounds can be derived.
Specifically, when the effective bending stiffness Deff of the
piezoelectric-beam element, as given below, becomes negat-
ive at a certain frequency, bandgaps emerge in piezoelectric
metamaterials [57].

Deff = EsIs+Eeff
p Ips (32)

where Ips = b
[
(hs+ 2hp)

3 − hs
3
]/

12. Eeff
p = Eoc

p

[
1− k231/

(1+ sCpZj (s))] are the effective Young’s modulus of piezo-
electric layers, where Eoc

p = 1/
(
SE11 − SE11k

2
31

)
is the open-

circuit condition Young’s modulus. k31 =
√
d231/

(
SE11ε

T
33

)
is

the electromechanical coupling coefficient. In other words,
bandgap bounds can be determined by solvingDeff = 0, where
the upper bounds of the bandgaps are solely dependent on
the characteristic roots of 1+ sCpZj (s) = 0. For the sake of
presentation, consider n = 2 (i.e. two bandgaps are expected
to create) and omit the resistance R, thereby the impedance
of the C-F higher-order resonant circuit (i.e. the one shown in
figure 2(c)) can be simplified as:

Zcj (s) =
1

sC1
1+s2L∗1 C1

+ sC2
1+s2L∗2 C2

(33)

in which L∗i =
Cp+Ci
Ω̄2
i CpCi

, for i = 1, 2, where Ω̄i is the

desired resonant frequency. Substituting equation (33) into
1+ sCpZj (s) = 0 and solving for its characteristic roots,
one can obtain the analytical expressions for the upper

bounds of bandgaps.

BG1,up =

√
A1 −

√
A2A3 +A4

2A2
(34)

BG2,up =

√
A1 +

√
A2A3 +A4

2A2
(35)

where BG1,up and BG2,up denote the upper bounds of the
bandgap at lower and higher frequencies, and

A1 =
(
Ω̄2

1 +Ω̄2
2

)
(C1C2 +C1Cp+C2Cp)

A2 = (C1 +Cp)(C2 +Cp)

A3 =
(
Ω̄4

1 +Ω̄4
2

)
(C1C2 +C1Cp+C2Cp)− 2Ω̄2

1Ω̄
2
2(C1Cp

−C1C2 +C2Cp)+C2
p

(
Ω̄1 +Ω̄2

)2(
Ω̄1 − Ω̄2

)2
A4 = C2

p

(
Ω̄2

1 +Ω̄2
2

)
.

Assuming that capacitances C1 in the C-F higher-order
resonant circuit tends to zero, equations (34) and (35)
can be further simplified by considering the limiting val-
ues lim

C1→0
A1 = C2Cp

(
Ω̄2

1 +Ω̄2
2

)
, lim
C1→0

A2 = Cp (C2 +Cp), and

lim
C1→0

A3 = C2Cp
(
Ω̄2

1 − Ω̄2
2

)2
+C2

p

(
Ω̄1 +Ω̄2

)2(
Ω̄1 − Ω̄2

)2
to

yield:

BG1,up = Ω̄1, for C1 → 0 (36)

BG2,up = Ω̄2, for C1 → 0. (37)

Similarly, asC2 approaches zero, the following relationship
is obtained:

BG1,up = Ω̄1, for C2 → 0 (38)

BG2,up = Ω̄2, for C2 → 0. (39)

9
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Figure 4. (a) The diagram of the higher-order resonant circuit with Ri-Li-Ci loops used in [46]; (b) The equivalent mechanical model of the
higher-order resonant circuit based on electrical-mechanical analogy. Reproduced from [46]. © IOP Publishing Ltd All rights reserved.

Equations (34)–(39) define the multi-bandgap decoupled
tuningmethod, which demonstrated that, provided the capacit-
ances of the circuit satisfy near-zero regulation, the bandgaps
are decoupled and can be independently tuned to any desired
resonance frequency (e.g. Ω̄1 and Ω̄2). This method alsomakes
it possible to obtain arbitrary decoupled defect modes. It
should be pointed out that the lower bound of the bandgaps
can also be determined by solvingDeff = 0. Due to the excess-
ive length of the resulting expression, it has been omitted from
this paper.

For comparison, we examine the bandgap tuning proper-
ties based on the conventional higher-order resonant circuit
(i.e. the one shown in figure 4(a)), whose impedance at n = 2
can be rewritten as:

Zhj (s) = sL1 +
sL2

1+ s2L2C2
(40)

with the same procedure, the upper bounds of bandgaps can
be derived as:

BG1,up =

√
1
2

(
(Ω1Ω2)

2
+(Ω1Ω3)

2
+(Ω2Ω3)

2
+

√(
Ω2

2 +Ω2
3

)2
Ω4

1 + 2(Ω1Ω2Ω3)
2 (
Ω2

2 −Ω2
3

)
+(Ω2Ω3)

4
)

Ω3
(41)

BG2,up =

√
1
2

(
(Ω1Ω2)

2
+(Ω1Ω3)

2
+(Ω2Ω3)

2
+

√(
Ω2

2 +Ω2
3

)2
Ω4

1 + 2(Ω1Ω2Ω3)
2 (
Ω2

2 −Ω2
3

)
+(Ω2Ω3)

4
)

Ω3
(42)

whereΩ1 = 1
/√

L1Cp,Ω2= 1
/√

L2C2, andΩ3= 1
/√

L2Cp.
It can be noticed that changing any of the resonant frequencies
Ω1, Ω2, and Ω3 simultaneously adjusts the frequency bands of
both bandgaps, implying that the defect bands formed in these
bandgaps are also frequency-shifted. In addition, it is to be
expected that as the resonance order increases, the closed-loop
tuning solution will become more complex and will require
readjustment of circuit parameters to keep the previously cre-
ated bandgaps unchanged.

Furthermore, as shown in equations (36)–(39), the decoup-
ling tuning characteristics of the multiple bandgaps depend on
the capacitance values in the C-F higher-order resonant circuit.

A numerical example is given to analyze the impact of capa-
citance C1 and C2 in equation (33) on the bandgaps. Letting
Ω̄1 = 200 and Ω̄2 = 300 Hz. The evolution of first and second
bandgaps, i.e. BG1 and BG2, as C1 and C2 vary is illustrated
in figures 5(a) and (b), respectively. The red and blue sur-
faces denote the upper and lower bounds of BG1 and BG2,
while the black dash lines are the reference for Ω̄1 = 200 Hz
and Ω̄2 = 300 Hz. It can be seen that as either C1 or C2

approaches zero, the upper bounds of BG1 and BG2 align with
their respective desired resonant frequencies, Ω̄1 and Ω̄2, thus
confirming the validity of equations (36)–(39). Meanwhile,
it is observed that when both C1 and C2 approach zero, it

10
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Figure 5. Variation in bandgap bounds of the piezoelectric metamaterial shunted with C-F higher-order resonant circuits as C1 and C2 vary:
(a) BG1 and (b) BG2; variation in the bandwidths of bandgaps as C1 and C2 vary: (c) BG1 and (d) BG2.

results in the closure of the two bandgaps. For further details,
figures 5(c) and (d) depict the variation in the bandwidths of
BG1 and BG2, defined as the width between the upper and
lower bounds, for different C1 and C2. For BG1, an increase in
C1 contributes to bandwidth expansion, whereas an increase in
C2 results in bandwidth reduction. In contrast, the bandwidth
of BG2 broadens as C1 and C2 increase, with this trend being
more pronounced asC2 increases. Therefore, to ensure that the
bandwidths of BG1 and BG2 are comparable, while minimiz-
ing the interference between the tuning of the two bandgaps, it
is recommended to use a smaller C2 to satisfy equations (38)
and (39). Based on the above analysis,C1 = 100 andC2 = 1 nF
will be used for the C-F higher-order resonant circuit at n= 2.

5. Results and discussion

This section commences with verification and discussion of
the piezoelectric metamaterial beam with a single defect band
through spectral and harmonic response analysis. Later, the
properties of arbitrary decoupled defect modes are examined
in detail.

5.1. Piezoelectric metamaterial with a single defect band

In this subsection, the defect mode properties of the piezoelec-
tric metamaterial when all cells are shunted with the first-order
resonant circuits shown are discussed. In this setup, the induct-
ance of the defective cells is intentionally adjusted differently

from that of the non-defective cells to create a single defect
band. This subsection provides a comprehensive analysis of
how the wave localization behavior of the defect mode is influ-
enced by factors such as open and short circuits at the defect-
ive cell, the defect-mode frequency, and the electro-damping
induced by resistance. It also highlights the limitations of the
single defect band, setting the stage for exploring arbitrary
decoupled defect modes in section 5.2.

First, the band structures of a piezoelectric metamaterial
beam shunted with first-order resonant circuits, both without
and with a piezoelectric defect, are computed based on the
STMM established in section 3.3. The first-order resonant cir-
cuit (i.e. the one shown in figure 2(a)) consists solely of an
inductor with an inductance of 8.48 H, corresponding to an
LC resonant frequency of Ω= 250 Hz. The resistance R is not
considered in any of the band structure analyses in this paper,
as the bandgap is, by definition, undamped. The effect of R
on the dynamic response will be discussed later. The super-
cell PBSE consists of 5 unit cells (i.e. k = 5). The materi-
al/geometric parameters are given in table 1. Figure 6(a) shows
the band structure of the piezoelectric metamaterial supercell
without defect. RE(q

∗
) denotes the real part of the dimension-

less wavenumber q
∗
= qkd/π. The black solid curve presents

solutions calculated using the STMM,while the red points rep-
resent results from COMSOL. Figure 6(a) illustrates that the
spectral analysis results closely match those from COMSOL.
Additionally, the band structure for a single-cell is superim-
posed in figure 6(a). It is important to note that the num-
ber of propagating bands in the supercell results is greater

11
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Figure 6. The band structure of the piezoelectric metamaterial without defect: (a) the real part and (b) the imaginary part of the
dimensionless wavenumber; the band structure of the piezoelectric metamaterial with a single defect band: (c) the real part and (d) the
imaginary part of the dimensionless wavenumber. The black solid curve and red point are STMM and COMSOL results, respectively, under
the supercell configuration. The blue dashed curve is STMM result under the single-cell configuration. The defect band is indicated by a
pink solid curve.

than that in the single-cell result, due to band folding in the
reduced supercell Brillouin zone [58]. In contrast, the bandgap
frequency range remains constant. Figure 6(b). Shows the
imaginary part of the dimensionless wavenumber, i.e. IM
(q

∗
), versus frequency. A sharp spike can be seen within the

bandgap formed from 239.1 to 249.99 Hz (shaded in green),
implying that this bandgap should be the LR mechanism-
induced bandgap. Besides, the values of IM (q

∗
) represent

the strength of wave attenuation, the larger Imag (q
∗
) is, the

stronger the wave attenuation effect of the bandgap.
Next, the defective cell is constructed by intentionally set-

ting the inductance assigned to the center cell (i.e. the third
cell) to 53 H, resulting in an LC resonance frequency of the
defective cell of Ωd = 100 Hz. Figure 6(c) displays the band
structure of the piezoelectric metamaterial with the defect-
ive cell. A defect band, i.e. the pink solid curve, appears
from 247.7 to 249.4 Hz. According to the theory of defect-
ive metamaterial, the evanescent wave will be confined inside
and in the vicinity of the defective cell, which is known as
wave localization. The underlying mechanism of wave local-
ization is attributed to the nearly zero energy transport velocity
of the wave at defect modes, as evidenced by the almost zero
slope of the defect band. In addition, figure 6(d) shows the

imaginary part evolution of the dimensionless wavenumber of
the piezoelectricmetamaterial supercell. Similar to figure 6(b),
an LR bandgap emerges from 238.3 to 247.7 Hz, which is
shaded in green. Besides, an additional LR bandgap is created
aroundΩd, which is induced by the circuitry resonance related
to the defective cell. It is worth noting that three unexpectedBS
bandgaps (shaded in blue) appear at the folding points of the
band structure, with a smoother evolution of the imaginary part
of q

∗
, as shown in the subfigures A and B in figure 6(d). This

phenomenon is due to the combined effect of band folding and
aperiodicity introduced by the defective cell, which was also
reported in detail in [51]. Moreover, the defect band can be
found between the LR and BS bandgaps, which is consistent
with other findings that defect mode always forms within the
bandgap.

Subsequently, the harmonic responses τ of piezoelectric
metamaterial beams, consisting of 11 unit cells with a point
defect located at the center (i.e. the 6th cell), are calcu-
lated using the SEM, as illustrated in figure 7(b). The mater-
ials and geometric parameters listed in table 1 are used.
The resonant frequencies Ωd = 100 and Ω = 250 Hz are
assigned to the defective and defect-free cells, respectively. As
a comparison, figure 7(a) illustrates the harmonic response of

12



Smart Mater. Struct. 34 (2025) 035015 Y Jian et al

Figure 7. The harmonic response of the piezoelectric metamaterial
beams consisting of 11 unit cells: (a) without defect; and (b) with a
point defect. The black solid curve and red asterisk are SEM and
COMSOL results, respectively. The defect-free bandgap range is
shaded in green. A defect-mode frequency related to the defect
mode is indicated in figure (b).

the piezoelectric metamaterial beam without defect. For this
dynamic response, the resistance R= 50 [Ω] is included in the
first-order resonant circuit for all cells (the unit of resistance,
[Ω], is to distinguish it from the resonant frequency symbolΩ).
The range of LR bandgap observed in figure 6(b) is highlighted
in green in figure 7. It is seen that SEM results are in good
agreement with the COMSOL simulations. Notably, a defect
mode, identified by the peak frequency in figure 7(b), appears
within the bandgap due to the piezoelectric defect. This peak
frequency is defined as the defect-mode frequency Ωdefect.

To gain insight into the defect mode, figures 8(a) and (b)
show the contours of the normalized wavemode shape, repres-
ented by |W (x, ω)/max (W (x, ω))|, as a function of frequency
for both defect-free and defective piezoelectric metamaterial
beams. The x-axis denotes the normalized length of the beam.
The white and blue colors mean weak and intense vibrations,
respectively. A visible LR bandgap can be seen in figure 8(a).
As a comparison, figure 8(b) illustrates a pronounced vibration
at the center of the piezoelectric metamaterial beam within the
bandgap, exactly around the defect-mode frequency Ωdefect.
This is attributed to the wave localization effect.

Subsequently, the defect mode properties are explored by
fixing Ω = 250 Hz, and varying the Ωd of the defective cell.
Figure 9(a) shows the evolution of Ωdefect as Ωd/Ω varies.
When Ωd/Ω < 1, Ωdefect decreases with a reduction in Ωd,
starting near the upper bound of the defect-free bandgap and
trending towards 247.6 Hz (i.e. the case of A). Conversely,
for Ωd/Ω > 1, Ωdefect increases from near the lower bound
of the defect-free bandgap, rising to 247.3 Hz (i.e. the case
of D) as Ωd increases. Note that when Ωd/Ω = 1, the piezo-
electric metamaterial with a defect degenerates into a uniform
metamaterial and thus has no defect mode. In addition, the
values of Ωdefect corresponding to Ωd → 0 and Ωd → ∞ are
governed by the stiffness of the piezoelectric element in the
open-circuit and short-circuit conditions, respectively. This

is because, to achieve Ωd approaching zero or infinity, the
impedance of the shunt circuit must be adjusted to infinity or
zero, respectively. According to equation (32), the equivalent
Young’s modulus of the piezoelectric element converges toEoc

p

and Eoc
p

(
1− k231

)
under open-circuit and short-circuit condi-

tions, respectively. To investigate the differences in the wave
localization effects of defect modes with varying Ωd/Ω, the
normalized wave mode shapes related to four cases of Ωdefect

(i.e, A-D) are presented in figures 9(b) and (c) shows the con-
tours of wave mode shapes at the corresponding Ωdefect. It can
be found that when Ωd/Ω deviates significantly from 1, the
wave localization effect intensifies. In other words, the vibra-
tion energy concentrates near the defective cells, while vibra-
tions in other regions are suppressed. On the contrary, when
Ωd/Ω closes to 1, it is seen that the wave localization effect
diminishes.

To further explore the properties of the defect mode under
varying resonance frequency Ω, figure 10 shows the con-
tours of the normalized wave mode shapes of the defect-
ive piezoelectric metamaterial at its defect-mode frequency
Ωdefect for Ω = 250, 350, 450, 600, 750, and 900 Hz. Two
cases are examined: Ωd = 1 and Ωd = 5000 Hz, corres-
ponding to the cases of Ωd/Ω < 1 and Ωd/Ω > 1, as illus-
trated in figures 10(a) and (b), respectively. Ωdefect obtained
at the above resonant frequencies Ω have been given in
figure 10. The results indicate that wave localization weak-
ens with increasing Ω, as evidenced by the vibration energy
no longer being confined to the defective cell of the piezo-
electric metamaterial, which is particularly pronounced when
Ω > 600 Hz. In other words, the energy-localized behavior of
defect mode created through piezoelectric resonance exhibits
a frequency dependence, a feature not previously discussed
in other literature. In addition, the tendency for wave loc-
alization to weaken is more evident when Ωd/Ω > 1 than
when Ωd/Ω < 1.

Furthermore, we investigate the effect of the resistance
connected in each cell on the energy-localized behavior of
the defective piezoelectric metamaterial. Figure 11(a) shows
the harmonic response as the resistance R varies, with the
Ω = 250 and Ωd = 1 Hz. As R increases, the trough value
of the bandgap region (green shaded area) increases, while
the peak of the defect-mode frequency decreases, implying
that both the wave attenuation and localization effects are
weakened. This phenomenon is due to the electro-damping
induced by the resistance, which diminishes the electrical
resonance effect. Notably, when R = 1600 [Ω], both the
bandgap and defect mode vanish. To illustrate above findings
more clearly, figure 11(b) presents the normalized wave mode
shapes corresponding to the different cases of R shown in
figure 11(a), demonstrating how the wave localization strength
decreases with increasing electro-damping. Above results
highlight the necessity of minimizing parasitic resistance in
practical circuit design. Note that traditional inductive cir-
cuit implementations typically rely on synthetic circuits com-
posed of analog electronic components [59, 60]. However, due
to the non-ideal characteristics of operational amplifiers (op-
amps), which introduce biased currents and voltages, parasitic
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Figure 8. Contours of the normalized wave mode shape as a function of frequency for piezoelectric metamaterial beams: (a) without defect;
and (b) with a point defect. The white and blue colors indicate weak and intense vibrations, respectively.

Figure 9. (a) The evolution of the defect-mode frequency Ωdefect with varying Ωd/Ω. The four limiting values of Ωdefect (i.e. A-D), along
with their corresponding coordinates on the x-axis and y-axis are explicitly labeled in the figure; (b) the normalized wave mode shapes
correspond to four cases of Ωdefect A-D in (a); (c) Contours of normalized wave mode shapes at the corresponding Ωdefect.

resistances are unavoidable [61]. To overcome this issue, it
is recommended to use programmable digital circuits [62–64]
for implementing the higher-order resonant circuits presented
in this paper for practical applications. Programmable digital
circuits can simulate the voltage–current relationships of real
circuits by programming transfer functions, enabling nearly
zero-resistance electrical resonance [64].

Based on the findings of this subsection, the resistance of
all loops in the circuit will be fixed at R = 50 [Ω] in sub-
sequent analyses. In addition, the case where Ωd/Ω < 1, with

Ω < 750 Hz, is considered, selecting values of Ωd/Ω signific-
antly different from 1 to enhance the defect mode formation.

5.2. Piezoelectric metamaterial with arbitrary decoupled
defect modes

This subsection investigates the characteristics of decouplable
broadband defect bands in defective piezoelectric metamater-
ials for the design introduced in section 2. Apart from the cir-
cuit configuration, thematerial and geometrical parameters are
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Figure 10. Contours of the normalized wave mode shapes of the defective piezoelectric metamaterial at its defect-mode frequency Ωdefect
for different Ω in the cases of (a) Ωd = 1 Hz; and (b) Ωd = 5000 Hz. Ωdefect obtained for Ω = 250, 350, 450, 600, 750, and 900 Hz are
presented.

Figure 11. (a) The harmonic response of the defective piezoelectric metamaterial beams for different resistance R in the cases of Ω = 250
and Ωd = 1 Hz; (b) Contours of the normalized wave mode shapes of the defective piezoelectric metamaterial at its defect-mode frequency
Ωdefect for different R.

consistent with those in section 5.1. For analytical simplicity,
the C-F higher-order resonant circuit is initially configured as
second-order (n= 2), resulting in two LR bandgaps. Based on
the preceding analysis, to achieve a pronounced wave local-
ization effect, the desired resonant frequencies Ω̄1 and Ω̄2 of
the C-F higher-order resonant circuit in non-defective cells are
constrained within 750 Hz, while the desired resonance fre-
quency in the defective cell is set to Ω̄d = 1 Hz. Additionally,
as discussed in section 4, the capacitances C1 = 100 and
C2 = 1 nF in the C-F higher-order resonant circuit are used
to ensure that the two LR bandgaps have comparable widths.

Considering the supercell PBSE configuration,
figures 12(a) and (b) illustrate the band structure of the defect-
free piezoelectric metamaterial shunted with C-F higher-order
resonant circuits. The desired resonant frequencies in the shunt
circuit are set to Ω̄1 = 200 and Ω̄2 = 300 Hz. The real part of
the dimensionless wavenumber obtained from the single-cell

configuration is also depicted in figure 12(a). One can find
that the STMM results for the supercell piezoelectric metama-
terial highly match the COMOSL results. In addition, two LR
bandgaps, denoted as BG1 and BG2, are observed around Ω̄1

and Ω̄2, which is attributed to LC resonance.
Note that BG1 and BG2 are relatively narrow, depending

on the values of circuit parameters C1 and C2. As detailed
in section 4, there is a trade-off between expanding the band-
width of bandgaps and ensuring that multiple bandgaps can be
independently tuned. However, this trade-off does not impact
the formation of defect modes. Due to the near-zero energy
transport velocity characteristic of defect bands, they retain
narrowband properties even when situated within a broader
bandgap. Consequently, the most effective method for broad-
ening the operational frequency range of defect modes is to
create multiple defect bands. Figures 12(c) and (d) present
the band structure of the defective piezoelectric metamaterial
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Figure 12. The band structure of the defect-free piezoelectric metamaterial shunted with C-F higher-order resonant circuit: (a) the real part
and (b) the imaginary part of the dimensionless wavenumber; The band structure of the defective piezoelectric metamaterial shunted with
C-F higher-order resonant circuit: (c) the real part and (d) the imaginary part of the dimensionless wavenumber. The black solid curve and
red point are STMM and COMSOL results, respectively, under the supercell configuration. The blue dashed curve is STMM result under the
single-cell configuration. The defect bands close to BG1 and BG2, referred to as the 1st defect band and 2nd defect band, are indicated by a
pink and green solid curve, respectively.

shunted with C-F higher-order resonant circuits. Similar to
the findings in figure 6(c), new BS bandgaps are formed at
the folding points RE (q∗ = 1). The passbands between these
BS bandgaps and LR bandgaps are identified as defect bands,
referred to as the 1st defect band and 2nd defect band, based
on their proximity to BG1 or BG2.

Subsequently, the independent tunability of the two defect
bands is verified by examining the frequency variations of the
two defect bands when Ω̄1 is fixed at 200 Hz and Ω̄2 var-
ied. Figures 13(a)–(f) shows the band structure of the defect-
ive piezoelectric metamaterial incorporating C-F higher-order
resonant circuit, as calculated using the STMM for the cases of
Ω̄2 = 225, 300, 375, 450, 525, and 600 Hz, respectively. From
the results shown in figures 13(b)–(f), one can observe that as
Ω̄2 changes, the frequency of the 2nd defect band can consist-
ently be tuned to the vicinity of Ω̄2, whereas the frequency of
the 1st defect band remains largely unaffected. In particular,
figure 13(g) illustrates the case where the inductance in the 2nd
loop of the circuit is perturbed and becomes non-functional
(i.e. L∗2 = 0in equation (33)). It can be seen that, due to the
elimination of the resonance function of the 2nd loop, both
the 2nd defect band and the bandgap disappears, while the 1st

defect band is not affected. These findings confirm that the fre-
quencies of the two defect bands can be independently adjus-
ted by tuning the desired resonance frequency Ω̄1 and Ω̄2.

However, as shown in figure 13(a), when Ω̄1 and Ω̄2are
relatively close, the 2nd defect band shifts toward lower fre-
quencies. To explore this further, figure 14 presents the fre-
quencies of the 1st and 2nd defect bands, obtained through
band structure analysis with a fixed Ω̄1 of 200 Hz, while vary-
ing Ω̄2 from 210 to 600 Hz. The defect band frequencies are
taken at RE (q

∗
) = 0 in the band structure. It is observed that

as Ω̄2 approaches Ω̄1, the frequency of the 1st defect band
decreases, with this trend becomes more pronounced as the
resonant frequencies become closer. The zoomed-in view of
figure 14 clearly shows this phenomenon. These results indic-
ate that the frequency adjustment of multiple defect modes is
no longer completely independent.

The issue arises from the choice of capacitances, C1 = 100
and C2 = 1 nF, to balance the bandgap width, which results in
non-ideal switching characteristics of the current branches in
the C-F higher-order resonant circuit. Consequently, when the
resonant frequencies are far apart, one loop resonates while the
other loops can effectively treated as open circuits. However,
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Figure 13. The evolution of the two defect bands in the defective piezoelectric metamaterial incorporating C-F higher-order resonant circuit
under the condition where Ω̄1 = 200 Hz and: (a) Ω̄2 = 225 Hz; (b) Ω̄2 = 300 Hz; (c) Ω̄2 = 375 Hz; (d) Ω̄2 = 450 Hz; (e) Ω̄2 = 525 Hz; (f)
Ω̄2 = 600 Hz; (g) L∗2 = 0in Eq. (33).

Figure 14. Evolution of defect band frequencies with varying Ω̄2,
where Ω̄1is fixed at 200 Hz.

when the resonant frequencies are very close, the interaction
between the loops becomes more significant, and the reson-
ating loop no longer behaves as an isolated system. As a res-
ult, an optimization problem arises in the decoupled tuning of
defect modes. Multi-objective optimization methods, such as
genetic algorithms, could be employed to tune the circuit para-
meters, ensuring minimal interference between circuit loops
when resonant frequencies are close and preventing defect
modes from disappearing due to narrow bandgaps. Since this
is not the focus of the current work, it will not be further
elaborated.

In addition to the band structure analysis, figures 15(a)–
(c) shows the harmonic responses of the defective piezoelec-
tric metamaterial for three sets of resonance frequencies, i.e.
Ω̄1 = 200 and Ω̄2 = 300 Hz, Ω̄1 = 200 and Ω̄2 = 450 Hz,

Ω̄1 = 200 and Ω̄2 = 600 Hz, which correspond to (b), (d),
and (f) in figure 13, respectively. It is found that the SEM
and COMSOL results show high consistency, validating the
accuracy of the proposed model. In the enlarged view of
the bandgap in figures 15(a)–(c), the defect-mode frequen-
cies Ωdefect appear as peaks, labeled A-F. To distinguish the
energy localization properties of the second defect band from
those of the first, figure 15(d) shows the contours of normal-
izedwavemode shapes corresponding toΩdefect as identified in
figures 15(a)–(c). Notably, as Ω̄2 varies, the normalized wave
mode shape of the 1st defect band remains unchanged, as illus-
trated by A, C, and E in figure 15(d), indicating no interference
between the two defect modes. In addition, when Ω̄2 is relat-
ively close to Ω̄1, e.g. Ω̄1 = 200 and Ω̄2 = 300 Hz, the mode
shapes of the two defect bands resemble each other, as shown
by A and B in figure 15(d). However, with increasing Ω̄2, the
energy localization effect of the 2nd defect band gradually
diminishes, as observed in D and F in figure 15(d). The above
phenomenon further substantiates that the wave localization
properties of defect modes in piezoelectric metamaterials are
frequency dependent, with the localization effect diminishing
as frequency increases.

Figure 16 presents the contours of the normalized wave
mode shape as a function of frequency for the defective piezo-
electric metamaterial beams at Ω̄1 = 200 and Ω̄2 = 300 Hz,
serving to illustrate details of the defect modes in frequency-
space. Within the frequency ranges of 182–186 Hz and 305–
309 Hz, two vibration suppression regions are observed,
corresponding to BG1 and BG2, respectively. The enlarged
views show significant vibrations at the central position (i.e.
x/kd = 0.5) of the piezoelectric metamaterial beam within
BG1 and BG2, indicating the wave localization. The 1st and
2nd defect-mode frequenciesΩdefect are also highlighted in the
enlarged views.

Thus far, the results of this section validate the conjecture
in section 2.2, demonstrating that arbitrary decoupled defect

17



Smart Mater. Struct. 34 (2025) 035015 Y Jian et al

Figure 15. Harmonic responses of the defective piezoelectric metamaterial beams consisting of 11 unit cells for the cases of (a) Ω̄1 = 200,
Ω̄2 = 300 Hz; (b) Ω̄1 = 200, Ω̄2 = 450 Hz; and (c) Ω̄1 = 200, Ω̄2 = 600 Hz. The black solid curve and red asterisk are SEM and COMSOL
results, respectively. Defect-mode frequencies Ωdefect are labeled A-F within the enlarged view of the bandgap regions. Contours of
normalized wave mode shapes corresponding to the identified Ωdefect are shown in (d).

Figure 16. Contours of the normalized wave mode shape as a
function of frequency for defective piezoelectric metamaterial
beams at Ω̄1 = 200 and Ω̄2 = 300 Hz.

modes can be generated in multiple bandgaps. This approach
fundamentally differs from existing methods for broadening
defect modes. Specifically, traditional techniques such as dual
defects or grading defects create multiple defect modes by
introducing additional defects through modifying geometries,
materials, or circuit parameters at different spatial locations
in the metamaterial. However, these methods usually res-
ult in coupled defect modes, where changes to defect para-
meters simultaneously affect all defect-mode frequencies and

the wave localization effect. Additionally, the multiple defect
bands produced by these methods are typically formed within
a single bandgap, limiting their frequency tuning range. In
contrast, the method proposed in this work requires no spa-
tially distributed defects. Instead, it enables multiple inde-
pendently tunable defect modes through the adjustment of cir-
cuit parameters. Another advantage is that the defect bands are
formed in different bandgaps and are therefore theoretically
tunable to arbitrary frequency.

To further validate the proposed approach, additional
examples are presented to demonstrate its capability to achieve
arbitrary decoupled defect modes across multiple frequency
bands. Without loss of generality, three higher-order circuit
configurations are examined: circuit order n = 4 (Case 1),
n = 6 (Case 2), and n = 8 (Case 3), designed to generate four,
six, and eight LR bandgaps, respectively. In Case 3, the desired
resonance frequencies are specified as Ω̄1 = 250, Ω̄2 = 280,
Ω̄3 = 310, Ω̄4 = 340, Ω̄5 = 370, Ω̄6 = 400, Ω̄7 = 430 and
Ω̄8 = 460 Hz. The desired resonance frequencies for Cases
1 and 2 are taken from the first four and first six resonance
frequencies specified in Case 3, respectively. Based on the
analysis in section 4, to ensure the decoupling of the defect
modes, the capacitance C1 in the circuit for all three cases
is set to 100 nF, while the other capacitances in these cases
are set to 1 nF. All other geometric and material parameters
remain consistent with the previous analysis. Figures 17(a)–
(c) illustrates the band structures of the defective piezoelectric
metamaterial shunted with C-F higher-order resonant circuit
for n = 4, n = 6, and n = 8, respectively. In figure 17(a),
four defect bands corresponding to the desired frequencies

18



Smart Mater. Struct. 34 (2025) 035015 Y Jian et al

Figure 17. Band structures of the defective piezoelectric metamaterial incorporating C-F higher-order resonant circuit for varying circuit
orders: (a) n = 4 (Case 1); (b) n = 6 (Case 2); (c) n = 8 (Case 3). Defect bands in different band gaps are highlighted with distinct colors.

appear, indicated by the colored lines. With increasing the cir-
cuit order, as shown in figures 17(b) and (c), additional defect
bands emerge at the designated frequencies. Except for the 1st
defect band, the frequencies of the other existing defect bands
remain largely unaffected. The shift in the 1st defect band fre-
quency is due to the non-ideal switching characteristics of the
current-flowing branch in the C-F higher-order resonant cir-
cuit caused by C1 = 100 nF, similar to the case discussed in
figure 13(a).

6. Conclusions

This paper addresses the challenge of achieving multi-band
wave localization with a single spatial defect by introducing
electrically controlled defects. A new type of defective piezo-
electric metamaterial beam is proposed, comprising periodic-
ally arranged piezoelectric elements, each shunted to a C-F
higher-order resonant circuit. One cell is selectively coupled
to a first-order resonant circuit, thereby creating an electric-
ally controlled defect. The advantage of C-F higher-order
resonant circuits lies in the ability of their ‘current-flowing’
branches to exhibit a ‘switching’ characteristic across differ-
ent resonant frequencies, enabling independent operation of
resonant branches. Building on this property, we propose a
multi-bandgap decoupling tuning method to realize the arbit-
rary decoupled defect modes. To enhance computational effi-
ciency and prediction accuracy, the band structure of the pro-
posed design is calculated using the spectral transfer matrix
method in conjunction with the supercell technique, while
the harmonic response is obtained using the SEM. The study
yields several valuable conclusions. First, the energy-localized
behavior is most pronounced when the circuit condition at the

defect is either open or short-circuited. This localization effect
is frequency-dependent, diminishing as the defect-mode fre-
quency increases. Second, by increasing the order of the C-F
higher-order resonant circuits, an arbitrary number of defect
modes can be generated at desired frequencies. Third, the
resulting multiple defect modes are effectively decoupled in
terms of frequency and wave localization strength. Compared
to traditional defect metamaterials, the proposed design elim-
inates the reliance of defect mode formation on physical struc-
tural defects. It provides greater flexibility in adjusting the spa-
tial localization, frequency, and number of defect modes gen-
erated. Additionally, it is recommended to employ program-
mable digital circuits technology for the implementation of
the circuits in this study. This technology not only addresses
the parasitic resistance issues associated with traditional syn-
thetic circuits but also has the potential to realize adaptive
defect modes, positioning the design as a promising solution
for waveguides and sensor devices operating in complex and
dynamic vibration environments.
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