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A B S T R A C T

Piezoelectric materials and acoustic black hole (ABH) effects have been individually studied for vibration sup
pression, yet their combined potential in metamaterial design remains largely unexplored. This study introduces 
a novel metamaterial beam (meta-beam) that integrates both mechanisms: a double-leaf ABH configuration for 
broadband vibration suppression and tunable piezoelectric shunting circuits for adaptive resonance control. To 
overcome the inherent computational limitations of conventional transfer matrix methods in transmittance 
prediction, a Riccati transfer matrix method (RTMM) is developed to significantly enhance computational sta
bility. Theoretical predictions are rigorously validated against finite element (FE) simulations and experimental 
results. The proposed meta-beam achieves a 283.5 % and 34.2 % wider total band gap range compared to 
conventional piezoelectric and ABH meta-beam designs, respectively. A comparative analysis highlights the 
influence of ABH indentation thickness profiles on band gap formation, interpreted from an energy perspective. 
In addition, the tunability of the meta-beam is explored by adjusting the shunt circuit inductance, facilitating the 
merging of local resonant and Bragg scattering band gaps into a unified one. These findings demonstrate the 
synergistic potential of piezoelectric-ABH integration in developing high-performance metamaterials with 
enhanced and customizable vibration control.

1. Introduction

Metamaterials with unique characteristics, particularly those 
leveraging the band gap phenomenon to suppress acoustic or elastic 
waves [1–4], have garnered significant research interest. From the 
perspective of the formation mechanism, band gaps can be categorized 
into local resonant (LR) [5,6] and Bragg scattering (BS) types [7,8]. 
Early studies employed mechanical oscillators to generate LR band gaps 
[9–11]. However, those systems suffered from limited tunability and 
bulky sizes, hindering practical implementation. To address above 
challenges, piezoelectric metamaterials with inductive or capacitive 
shunt circuits were proposed, leveraging electromechanical coupling 
effects. Utilizing these effects, piezoelectric transducers, easily attached 
to the target structure, can generate LC resonance and controllable band 
gaps, capitalizing on the high transformability of the shunting circuit. 
Pioneering work by Thorp et al., [12] periodically placed shunted 
piezoelectric patches along rods to control the longitudinal wave prop
agation. Following the same idea, piezoelectric metamaterials found 
extensive application in the vibration suppression of plates [13–16] and 

beams [17–20]. Additionally, negative capacitances [21–23] and 
nonlinear shunt circuits [24–26] were employed to enlarge the band
width of band gaps. However, physically connected periodic arrange
ment designs for piezoelectric metamaterial beams (meta-beams) are 
impractical due to the challenges in ensuring electrical insulation be
tween neighboring unit cells, not to mention the difficulty in imple
menting the electrodes. Consequently, stepped configurations were 
proposed [27–29], where only half of the unit cell was covered by a 
piezoelectric patch, leaving the other half free for electrode installation.

Unlike piezoelectric metamaterials relying solely on electrome
chanical coupling, acoustic black hole (ABH) structures exploit geo
metric tailoring for vibration suppression. ABH structures, characterized 
by a thickness gradually approaching zero according to a power law, can 
effectively manipulate and reflect flexural waves [30]. Pekeris [31] first 
discovered the phenomenon of sound velocity decreasing to zero as it 
travels through a non-uniform stratified fluid. Subsequently, Mironov 
[32] proposed the concept of ABH and applied it to the vibration sup
pression of plates. Various structures with ABH indentations have been 
proposed, including single-leaf beams [33,34], double-leaf beams [35,
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36], V-shaped beams [37], and pillars [38,39]. Notably, double-leaf 
ABH beams have been shown to generate a wider first band gap by 
incorporating both LR and BS effects [40]. Techniques such as graded 
strategies [15,20,34] and the use of dynamic vibration absorbers [41] 
have been employed to broaden the widths of band gaps in ABH struc
tures. However, it is important to note that ABH effects primarily occur 
above a characteristic frequency where the wavelength becomes smaller 
than the ABH feature size. This threshold frequency, known as the cut-on 
frequency, serves as a key indicator for evaluating the effective opera
tional range of a single ABH segment [42]. Recent advances incorpo
rating metamaterial concepts have demonstrated that ABH meta-beams 
can achieve wide band gaps and effective wave suppression even below 
this cut-on frequency [43,44]. Nevertheless, a significant challenge re
mains in enhancing the tunability of ABH structures without requiring 
complex geometric modifications.

Theoretical methods play a crucial role in investigating band gaps 
and wave propagation in metamaterials. Various methods, including the 
spectral element method (SEM), plane wave expansion (PWE) method, 
and Rayleigh-Ritz method (RRM), have been developed and widely 
employed for band gap analysis. Among them, the transfer matrix 
method (TMM), originally developed by Targoff [45], remains one of the 
most prevalent approaches, particularly for metamaterials modeled 
using Euler-Bernoulli or Timoshenko beam theory. Compared to SEM 
[46–48], which offers high accuracy at the expense of significant 
computational cost, TMM provides a balance between efficiency and 
analytical tractability. Unlike PWE [49,50], which is well-suited for 
infinite periodic structures but less effective for finite systems, TMM 
excels in calculating the transmittance of finitely long systems with a 
limited number of unit cells. Additionally, while RRM [35,51] is effec
tive in capturing eigenmodes of low degree-of-freedom systems, it lacks 
the versatility and flexibility for analyzing complex metamaterial ar
chitectures. Overall, TMM is distinguished by its relatively high 
computational efficiency and the notable advantage that it does not 
require derivation of the global dynamic equations of the system. After 
discretizing the beam into segments, TMM is applied to both single-leaf 
[41,52] and double-leaf [53] ABH structures by assembling the transfer 
matrix of each segment based on Euler-Bernoulli beam theory. TMM has 
also proven to be efficient in band gap prediction for piezoelectric 
metamaterials [12,54]. However, a recent study by Hu et al., [28] 
pointed out that applying conventional TMM to a piezoelectric coupling 
system leads to a collapse in transmittance calculations in the 
high-frequency domain. This collapse is caused by numerical instability 
due to the successive multiplication of transfer matrices. To improve the 
accuracy and stability, the Riccati transfer matrix method (RTMM), first 
proposed by Horner et al., [55], offers an effective solution. RTMM 
combines the Riccati transformation with TMM to reduce the matrix 
magnitude, thereby providing stable calculation results. RTMM has been 
widely applied to model chain systems [56,57], single-leaf ABH beams 
[53,58], and multibody systems with closed loops [59], demonstrating 
high accuracy and stability across a range of problems.

Recent research has explored the application of piezoelectric trans
ducers on ABH structures. Deng et al., [60] attached piezoelectric layers 
to an ABH bimorph cantilever for energy harvesting and developed a 
semi-analytical model for simulation. Building on this, Li et al., [61] 
utilized resistive and inductive shunt circuits on a similar bimorph 
cantilever to enhance energy harvesting efficiency. While piezoelectric 
ABH structures have been widely explored for energy harvesting 
[62–64], their integration has also shown significant promise for vi
bration suppression [65]. Conventional approaches typically attach 
piezoelectric patches to ABH structures to reduce vibrations via shunt 
damping techniques [66–70]. For instance, Wan et al., [71] enhanced 
the vibration suppression performance of ABH plates below the cut-on 
frequency using piezoelectric shunt damping, while Wang et al., [72] 
employed passive strategies with piezoelectric elements to exploit the 
ABH effect for absorbing medium to high-frequency waves through 
localized damping. Further advancements introduced electrical 

nonlinearity to standalone ABH beams, improving tunability in vibra
tion suppression [73] and enhancing low-frequency performance [74]. 
However, these studies primarily focus on shunt damping applications 
in standalone ABH structures, with limited exploration of 
piezoelectric-ABH coupling in metamaterial beam designs, particularly 
concerning hybrid band gap formation and merging. A notable excep
tion is Chen et al., [75], who combined piezoelectric metamaterials with 
a single-leaf ABH structure, though their work lacked experimental 
validation. More recently, Wu et al., [76] proposed a similar meta-beam 
but emphasized machine learning-based optimization of the vibration 
suppression region. Compared to those single-leaf configurations, the 
double-leaf ABH structure offers a broader first band gap, presenting a 
key advantage. To address these research gaps, this study introduces a 
novel piezoelectric meta-beam with a double-leaf ABH configuration, 
employing RTMM for precise transmittance prediction and investigating 
the synergistic effects of piezoelectric and ABH induced band gaps for 
broadband vibration suppression.

This paper is structured into five sections. Following the brief 
introduction in the first section, Section 2 presents a theoretic analysis of 
the proposed meta-beam based on the Timoshenko beam theory, where 
the band structure and transmittance response are predicted. Section 3
provides validation through the finite element (FE) simulation and ex
periments, along with an investigation of band gap tunability, including 
discussions on the dependence of geometric and electric parameters. 
Finally, Section 4 summarizes the key findings and highlights the merits 
of the proposed meta-beam.

2. Theoretical modelling using Riccati transfer matrix method

This section provides a comprehensive overview of the structural 
design and theoretical model of the piezoelectric meta-beam with the 
double-leaf ABH configuration. First, a graphical representation illus
trates the geometric design of the proposed meta-beam. Subsequently, 
the governing equations are derived using the Timoshenko beam theory. 
The band structure is calculated using the TMM and Bloch’s theorem, 
and transmittance is predicted by RTMM.

Fig. 1 illustrates the piezoelectric meta-beam with the double-leaf 
ABH configuration. In the local coordinate system, the x-axis is along 
the length direction, and the y-axis is the width direction. Within a unit 
cell, the double-leaf ABH beam has a length of LABH, with an indentation 
length of Lt, and the piezoelectric-covered beam has a length of Lp. The 
thicknesses of the substrate and piezoelectric patches are, respectively, 
hs and hp. The thickness of the ABH indentation ht is governed by the 
ABH profile, ht(x) = hs − 2(εxm + h0), where ε and m represent the 
smoothness coefficient and the power order, respectively. h0 denotes the 
thinnest thickness of the substrate. It is worth mentioning that m should 
be greater than or equal to 2. Additionally, the widths of all the beams 
are identically equal to b.

As depicted in Fig. 2(a), the top and bottom piezoelectric layers in 
each unit cell are connected in parallel and shunted to an external 
inductance circuit, with the inductance of Ld. Fig. 2(b) shows the 
equivalent circuit of a single segment of the piezoelectric beam, with Cp 
representing the internal capacitance of the in-parallel connected 
piezoelectric layers.

2.1. Governing equations

As introduced in Section 1, previous studies of tapered ABH segments 
typically simplify them as stepped Euler-Bernoulli beams composed of 
multiple segments with constant thickness. However, after discretiza
tion, these stepped beams no longer satisfy the slender beam assumption 
for Euler-Bernoulli beams. To address this issue, this paper employs 
Timoshenko beam theory to improve modelling fidelity and predictive 
capabilities.

According to the prevailing norm on piezoelectricity, the coupling 
between the elastic and electrostatic properties of piezoelectric patches 
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can be expressed as follows: 

⎡

⎣
εp
γp
D3

⎤

⎦ =

⎡

⎢
⎢
⎣

SE
11 0 d31

0 SE
55 0

d31 0 εT
33

⎤

⎥
⎥
⎦

⎡

⎣
σp
τp
E3

⎤

⎦, (1) 

where ԑp and γp represent the longitudinal and shear strain along the 
beam’s length and thickness directions, respectively. Correspondingly, 
σp and τp are the longitudinal and shear stresses. D3 is the electric 
displacement, and E3 is the dielectric field in the thickness direction. SE

11 
and SE

55 are the elastic compliance constants. d31 is the piezoelectric 
constant. The stresses can also be expressed in terms of strains: 

⎡

⎣
σp
τp
E3

⎤

⎦ =

⎡

⎢
⎢
⎣

CD
11 0 − h31

0 CD
55 0

− h31 0 βS
33

⎤

⎥
⎥
⎦

⎡

⎣
εp
γp
D3

⎤

⎦, (2) 

where CD
11 and CD

55 are elastic stiffness constants. βS
33 is the permittivity 

constant, and h31 is the piezoelectric constant. As the commercial FE 
software, COMSOL, requires piezoelectric properties to be input in 
stress-strain form 

{
CE

11, CE
55, e31, εS

33
}
, the relationship between the 

different sets of piezoelectric constants can be derived as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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SE
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1
CE

11

SE
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1
CE

55

d31 =
e31

CE
11

εT
33 = εS

33 +
d2

31
SE

11

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
11 =

εT
33

εT
33SE

11 − d2
31

CD
55 =

1
SE

55

h31 =
d31

εT
33SE

11 − d2
31

βS
33 =

SE
11

SE
11εT

33 − d2
31

. (3) 

Considering the small deflection assumption, the strain components 
in the substrate and piezoelectric material can be represented as func
tions of the transverse displacement w(x, t) and rotational angle of the 
cross-section ϕ(x, t) at the position x and time instant t 
⎧
⎪⎪⎨

⎪⎪⎩

εs = εp = −
∂ϕ(x, t)

∂x
y

γs = γp = ϕ(x, t) −
∂w(x, t)

∂x
.

(4) 

Considering the Young’s modules Es and shear modules Gs of the 
substrate, the relationship between stresses and strains in the substrate 
and piezoelectric patches can be expressed respectively as: 
{

σs = Esεs
τs = Gsγs

,

{
σp = CD

11εp − D3h31

τp = CD
55γp.

(5) 

Based on Eq. (5), the governing equations of the piezoelectric meta- 
beam, in terms of transverse displacement w(x, t), rotation angle ϕ(x, t), 
and longitudinal displacement u(x, t), can be derived by applying 
Hamilton’s principle [28]: 

ρA
⌢ ∂2w(x, t)

∂t2 + κGA
⌢
[

∂ϕ(x, t)
∂x

−
∂2w(x, t)

∂x2

]

= 0, (6) 

Dt
∂2ϕ(x, t)

∂x2 + κGA
⌢
[

∂w(x, t)
∂x

− ϕ(x, t)
]

− ρIz
⌢ ∂2ϕ(x, t)

∂t2 = 0, (7) 

ρA
⌢ ∂2u(x, t)

∂x2 − EA
⌢ ∂2u(x, t)

∂t2 = 0, (8) 

where ρA
⌢

= ρshsb+ 2ρphpb, GA
⌢

= Gshsb+ 2CD
55hpb, ρIz

⌢
= ρsIs

z +

2ρpI
p
z ,EA

⌢

= Eshsb + 2CD
11hpb with Is

z and Ip
z representing the moment 

inertias of the cross section area of the substrate and the piezoelectric 
patch respectively. Under the open-circuit condition, the following 

Fig. 1. Proposed piezoelectric meta-beam with double-leaf ABH configuration.

Fig. 2. Schematic of circuit connections. (a) Close-up view of shunt circuit connection, and (b) equivalent circuit of piezoelectric beam.
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holds: Dt = EsIs
z + 2CD

11Ip
z − 2hpbh2

sph2
31/βS

33, in which, hsp is the thickness 
difference between the substrate and piezoelectric patch. κ is the shear 
correction factor.

Assume the external shunt circuit is an inductive circuit, as shown in 
Fig. 2, the governing equation of the circuit can be obtained by applying 
Kirchhoff’s law: 

dip(t)
dt

= θ
[

∂2ϕ(L, t)
∂t2 −

∂2ϕ(0, t)
∂t2

]

− Cp
d2v(t)

dt2 =
v(t)
Ld

, (9) 

where ip(t) represents the current, and v(t) is the voltage. The equivalent 
capacitance Cp of the in-parallel connected circuit is governed by Cp =

2εS
33bLp/hp, while the constant θ is defined as θ = 2bhspd31 /SE

11. 
Considering a harmonic excitation and the steady-state response, w(x, t), 
ϕ(x, t), u(x, t) and v(t) can be expressed as a product of an amplitude 
function and a time function using the variable separation method, i.e., 
w(x, t) = W(x)eiωt, ϕ(x, t) = Φ(x)eiωt, u(x, t) = U(x)eiωt and v(t) = Veiωt in 
which ω is the circular excitation frequency. Subsequently, the gov
erning equations Eqs. (6)-(9) can be rewritten as: 

ω2ρA
⌢

W(x) + κGA
⌢

[
d2W(x)

dx2 −
dΦ(x)

dx

]

= 0, (10) 

Dt
d2Φ(x)

dx2 + κGA
⌢
[
dW(x)

dx
− Φ(x)

]

+ ω2ρIz
⌢

Φ(x) = 0, (11) 

ρA
⌢ ∂2U(x)

∂x2 + EA
⌢

ω2U(x) = 0, (12) 

− ω2θ[Φ(L) − Φ(0)] + ω2CpV =
V
Ld
. (13) 

The general solution for the transverse amplitude W(x) and rotation 
angle Φ(x) can be assumed as: 
{

W(x) = Beikx

Φ(x) = rBeikx.
(14) 

Substituting Eq. (14) back into Eqs.(10) and (11) yields an eigen
value problem. The roots of the eigenvalue problem can be derived as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1 = − k2 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
F +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2k4
F + 4

(
1 − η1k4

G
)√√

k3 = − k4 =
kF
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
F −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η2k4
F + 4

(
1 − η1k4

G
)√√

,

(15) 

where kF =
̅̅̅̅
ω

√ (
ρA
⌢

/Dt

)0.25
, kG =

̅̅̅̅
ω

√ (
ρA
⌢

/κGA
⌢ )0.25

, η = ρI
⌢

/ρA
⌢

+Dt 

/κGA
⌢

, and η1 = ρI
⌢

/ρA
⌢

. Subsequently, Eq. (14) can be rewritten as: 
{

W(x) = B1eik1x + B2eik2x + B3eik3x + B4eik4x

Φ(x) = r1B1eik1x + r2B2eik2x + r3B3eik3x + r4B4eik4x,
(16) 

where rn = i
(

k2
n − k4

G

)
/kn, and Bn represent the state coordinates (n = 1, 

2, …,4). The bending moment M(x) and shear force Q(x) can be derived 
as: 
⎧
⎪⎪⎨

⎪⎪⎩

M(x) = Dt
∂Φ(x)

∂x

Q(x) = GA
⌢
[

∂W(x)
∂x

− Φ(x)
]

.

(17) 

Besides, the longitudinal displacement and axial force can be ob

tained in terms of the coordinates Cn (n = 1, 2), with γ2 = ω2ρA
⌢

/EA
⌢

: 
{U(x) = C1sin(γx) + C2cos(γx)

N(x) = EA
⌢

γ[C1cos(γx) − C2sin(γx)].
(18) 

Thus, the modal coordinates Sp(x) containing transverse displace
ment, rotation angle, bending moment, shear force, longitudinal 
displacement, and axial force in a piezoelectric segment can be 
expressed in the matrix form: 

Sp(0) = Kpψp
Sp
(
Lp
)
= Hpψp,

(19) 

where the modal coordinates S(x) = [W(x), Φ(x), M(x), Q(x), U(x), N 
(x)]T. ψp represents the state coordinates of the piezoelectric segment, i. 
e., ψp = [B1,B2,B3,B4,C1,C2]T, with  

and 

Kp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0
r1 r2 r3 r4 0 0

iDtk1r1 iDtk2r2 iDtk3r3 iDtk4r4 0 0
GA
⌢

(ik1 − r1) GA
⌢

(ik2 − r2) GA
⌢

(ik3 − r3) GA
⌢

(ik4 − r4) 0 0
0 0 0 0 0 1
0 0 0 0 EA

⌢

γ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Additionally, Eq. (13) can be reformulated with a constant g, which is 
defined as g = Ldω2θ/(Ldω2Cp − 1) 

V = g[Φ(L) − Φ(0)]. (20) 

The bending moments induced by the piezoelectric effect can be 
derived as: 

M = θV. (21) 

Thus, combining Eqs.(20) and (21), Eq. (19) is updated with extra 
bending moments: 

Sp(0) =
(
Kp + G

)
ψp

Sp
(
Lp
)
=
(
Hp + G

)
ψp.

(22) 

where 

Hp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eik1Lp eik2Lp eik3Lp eik4Lp 0 0

r1eik1Lp r2eik2Lp r3eik3Lp r4eik4Lp 0 0

iDtk1r1eik1Lp iDtk2r2eik2Lp iDtk3r3eik3Lp iDtk4r4eik4Lp 0 0

GA
⌢

(ik1 − r1)eik1Lp GA
⌢

(ik2 − r2)eik2Lp GA
⌢

(ik3 − r3)eik3Lp GA
⌢

(ik4 − r4)eik4Lp 0 0

0 0 0 0 sin
(
γLp
)

cos
(
γLp
)

0 0 0 0 EA
⌢

γcos
(
γLp
)

− EA
⌢

γsin
(
γLp
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J. Zhang et al.                                                                                                                                                                                                                                   International Journal of Mechanical Sciences 296 (2025) 110312 

4 



G=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0

gθr1
(
eik1Lp − 1

)
gθr2

(
eik2Lp − 1

)
gθr3

(
eik3Lp − 1

)
gθr4

(
eik4Lp − 1

)
0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Fig. 3. depicts the force analysis between segments, with the ABH 
segment divided into plain segments pl,1 and pl,2, and tapered segments 
t,1 and t,2. It is worth mentioning that the subscripts I and O indicate the 
input and output of a segment. Additionally, the tapered segments are 
treated as a combination of j plain segments.

Similar to Eqs.(6)-(8), the governing equations in the transverse and 
longitudinal direction of a plain beam member are as follows: 

ρsAi
d2wi(x, t)

dt2 + κGsAi

[
dϕi(x, t)

dx
−

d2wi(x, t)
dx2

]

= 0, (23) 

ρsIi
d2ϕi(x, t)

dt2 + κGsAi

[

ϕi(x, t) −
dwi(x, t)

dx

]

− EsIi
d2ϕi(x, t)

dx2 = 0, (24) 

ρsAi
∂2ui(x, t)

∂x2 − EsAi
∂2ui(x, t)

∂t2 = 0, (25) 

where Ai and Ii represent the cross-sectional area and moment inertia of 
the cross-sectional area of discrete segments, respectively. wi(x, t), ui(x, 
t), and ϕi(x, t) stand for the transverse and longitudinal deflections and 
the rotation angle of the beam cross-section. Since the solutions to Eqs. 
(23)-(25) resemble those of the piezoelectric segment, the derivation 
details are omitted. The modal coordinates of each segment can be 
expressed as: 

Si(0) = Kiψ i
Si(Li) = Hiψ i,

(26) 

where Li is the length of the discrete segment. The continuity condition 
between jth and (j + 1)th segments in the tapered segment can be 
written as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Wj(Li) = Wj+1(0)
Φj(Li) = Φj+1(0)
Mj(Li) = Mj+1(0) + djNj+1(0)
Qj(Li) = Qj+1(0)
Uj(Li) = Uj+1(0) + djΦj+1(0)
Nj(Li) = Nj+1(0)

(27) 

It is worth noting that the thickness difference dj between each discrete 
segment cannot be ignored. As a result, the contribution of axial forces to 
bending moment calculation should be considered to improve accuracy. 
Rewrite Eq. (27), and the relationship between the first and the last 
segment can be written in a matrix form with a local transfer matrix Tt: 

{
Ttψ1 = ψ j

Tt = K− 1
j Hj− 1K− 1

j− 1Hj− 2...K− 1
2 H1

(28) 

As shown in Fig. 3, the geometric relationship between the tapered 
segments 1 and 2 can be expressed as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt1(0) = Wt2(0)

Φt1(0) = Φt2(0)

Ut1(0) = Ut2(0) + 2dΦt1(0)

Wt1(Lt) = Wt2(Lt)

Φt1(Lt) = Φt2(Lt)

Ut1(Lt) = Ut2(Lt) + 2dΦt1(Lt),

(29) 

where d denotes the distance between the two shape centers of tapered 
segments 1 and 2. Reformulating Eq. (29) in a matrix form yields: 

Aψ t1,1 = Bψ t2,1 (30) 

whereA=

[
A1

A2Tt

]

, B=

[
B1

B2Tt

]

, A1 =

⎡

⎣
− dr1 − dr2 − dr3 − dr4 0 1

1 1 1 1 0 0
r1 r2 r3 r4 0 0

⎤

⎦,

A2 =

⎡

⎢
⎢
⎣

− dr1eik1Lj − dr2eik2Lj − dr3eik3Lj − dr4eik4Lj sin
(
γLj
)

cos
(
γLj
)

eik1Lj eik2Lj eik3Lj eik4Lj 0 0

r1eik1Lj r2eik2Lj r3eik3Lj r4eik4Lj 0 0

⎤

⎥
⎥
⎦,

B1 =

⎡

⎢
⎢
⎣

dr1 dr2 dr3 dr4 0 1

1 1 1 1 0 0

r1 r2 r3 r4 0 0

⎤

⎥
⎥
⎦,

and 

B2 =

⎡

⎢
⎢
⎣

dr1eik1Lj dr2eik2Lj dr3eik3Lj dr4eik4Lj sin
(
γLj
)

cos
(
γLj
)

eik1Lj eik2Lj eik3Lj eik4Lj 0 0

r1eik1Lj r2eik2Lj r3eik3Lj r4eik4Lj 0 0

⎤

⎥
⎥
⎦.

Besides, ψ tn,1 represents the state coordinates of the first segment in the 
tapered segments 1 and 2. In addition, the continuity condition between 
plain and tapered segments can be represented as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wpl,1
(
Lpl
)
= Wt1(0)

Φpl,1
(
Lpl
)
= Φt1(0)

Mpl,1
(
Lpl
)
= Mt1(0) + Mt2(0) + dNt1(0) − dNt2(0)

Qpl,1
(
Lpl
)
= Qt1(0) + Qt2(0)

Upl,1
(
Lpl
)
= Ut1(0) + dΦt1(0)

Npl,1
(
Lpl
)
= Nt1(0) + Nt2(0).

(31) 

Fig. 3. Force analysis between plain and tapered segments with an equivalent treatment of tapered section.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt1(Lt) = Wpl,2(0)

Φt1(Lt) = Φpl,2(0)

Mt1(Lt) + Mt2(Lt) + dNt1(Lt) − dNt2(Lt) = Mpl,2(0)

Qt1(Lt) + Qt2(Lt) = Qpl,2(0)

Ut1(Lt) + dΦt1(Lt) = Upl,2(0)

Nt1(Lt) + Nt2(Lt) = Npl,2(0).

(32) 

where  
Spl,n(x) =

[
Wpl,n(x),Φpl,n(x),Mpl,n(x),Qpl,n(x),Upl,n(x),Npl,n(x)

]Trepresents 
the modal coordinates of the plain beam segments 1 and 2 with a length 
of Lpl, i.e., Lpl = LABH - Lt. Similarly, rearranging Eqs.(31) and (32) in the 
matrix form yields: 

Hpl,1ψpl,1 = Kt1ψ t1,1 + Kt2ψ t2,1
Ht1ψ t1,j + Ht2ψ t2,j = Kpl,2ψpl,2,

(33) 

in which,      

Kt1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0

r1 r2 r3 r4 0 0

iEsIik1r1 iEsIik2r2 iEsIik3r3 iEsIik4r4 dEsAiγ 0

GsAi(ik1 − r1) GsAi(ik2 − r2) GsAi(ik3 − r3) GsAi(ik4 − r4) 0 0

− dr1 − dr2 − dr3 − dr4 0 1

0 0 0 0 EsAiγ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Kt2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0

0 0 0 0 0 0

iEsIik1r1 iEsIik2r2 iEsIik3r3 iEsIik4r4 − dEsAiγ 0

GsAi(ik1 − r1) GsAi(ik2 − r2) GsAi(ik3 − r3) GsAi(ik4 − r4) 0 0

0 0 0 0 0 0

0 0 0 0 EsAiγ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ht1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eik1Li eik2Li eik3Li eik4Li 0 0

r1eik1Li r2eik2Li r3eik3Li r4eik4Li 0 0

iEsIsk1r1eik1Li iEsIsk2r2eik2Li iEsIsk3r3eik3Li iEsIsk4r4eik4Li dEsAsγcos(γLi) − dEsAsγsin(γLi)

GsAs(ik1 − r1)eik1Li GsAs(ik2 − r2)eik2Li GsAs(ik3 − r3)eik3Li GsAs(ik4 − r4)eik4Li 0 0

− dr1eik1Li − dr2eik2Li − dr3eik3Li − dr4eik4Li sin(γLi) cos(γLi)

0 0 0 0 EsAsγcos(γLi) − EsAsγsin(γLi)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Table 1 
Structural parameters of proposed meta-beam.

Geometrical Parameters Value Material Parameters Value

Substrate beam length LABH 

and Lp

0.02 m Substrate Young’s 
modulus Es

100 GPa

ABH segment length Lt 0.01 m Substrate shear modulus 
Gs

40 GPa

Substrate beam thickness 
hs

0.002 m Substrate density ρs 7165 kg/ 
m3

Piezoelectric patch 
thickness hp

0.0004 
m

Piezo layer Young’s 
modulus C11

E
66 GPa

Beam width b 0.02 m Piezo layer shear 
modulus C55

S
21 GPa

Substrate beam thinnest 
thickness h0

0.0005 
m

Piezoelectric permittivity 
ԑ33

T
15.93 nF/ 
m

Smoothness coefficient ε 20 Piezoelectric constant e31 − 12.54 C/ 
m2

Power order m 2 Inductance Ld 1.242 H
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and  

2.2. Band structure analysis

Considering the continuity condition between each unit cell, the 
total transfer matrix T between nth and (n + 1)th unit cell can be 
obtained: 

T = K− 1
pl
(
Hp +G

)(
Kp + G

)− 1HplK− 1
pl
(
Ht1Tt +Ht2TtB− 1A

)

(
Kt1 + Kt2B− 1A

)− 1Hpl,
(34) 

Assuming the meta-beam is infinitely long, the Bloch’s theorem in
terprets the structural periodicity as: 

ψn+1
1 = eiqLψn

1, (35) 

where q is the wave number, and L is the total length of a unit cell, i.e., L 
= LABH + Lp. A standard eigenvalue problem is formulated by comparing 
Eq. (34) and (35): 
⃒
⃒T − eiqLI

⃒
⃒ = 0, (36) 

where I is a 6 × 6 identity matrix. The dispersion relationships in both 
longitudinal and transverse directions of the proposed meta-beam can 
be determined by solvind Eq. (36). In the real band structure, band gaps 
occur in blank areas with no real solutions.

2.3. Transmittance spectra investigation

As mentioned in Section 1, directly applying conventional TMM 
leads to a collapse in transmittance calculations as a result of successive 
multiplication. Therefore, to improve the stability, RTMM is applied to is 
applied to predict the transmittance of the proposed meta-beam with 6- 
unit cells (n = 6). The relationship between modal coordinates in each 
unit cell can be rewritten as follows: 

So,n = USI,n + fn, (37) 

U =
(
Hp +G

)(
Kp + G

)− 1HplK− 1
pl
(
Ht1Tt +Ht2TtB− 1A

)

(
Kt1 + Kt2B− 1A

)− 1HplK− 1
pl .

(38) 

In the above equation, the subscripts I and O represent the input and 
output of a unit cell, and U represents the local transfer matrix in a unit 
cell. fi is the column array of the load function exerted on each unit cell. 
Then, Eq. (37) can be divided as a matrix form: 
[

Sa
Sb

]

O,n
=

[
U11 U12
U21 U22

][
Sa
Sb

]

I,n
+

[
fa
fb

]

n
(39) 

where SI,1 is a zero vector, representing the zero boundary conditions, 
and U11 ~U22 are the submatrices formed by rearranging the local 
transfer matrix U.

Introduce the following Raccati transformation to Eqs.(37) and (39) 

SaI,n = pnSbI,n + qn, (40) 

where 
{

pn+1 = (U11pn + U12)(U21pn + U22)
− 1

qn+1 = U11qn + fan − pn+1(U21qn + fbn).
(41) 

pn and qn are recursive equations with the initial value p1 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦,

q1 =

⎡

⎣
0
0
0

⎤

⎦. The input and output state vectors of each component can 

thus be obtained through recursive relations and boundary conditions. 
By using RTMM, the number of matrix dimensions involved in the 
calculation can be reduced by half.

The transmittance is defined as the ratio of the output to the input, i. 
e., the magnitude ratio of the response displacement to the excitation 
displacement: 

τ = 20log10(|Wn /W0|). (42) 

which is often expressed in the decibel scale. Theoretically, the band gap 
can be defined as the region where the transmittance of an undamped 
metamaterial is below 0 dB.

3. Results and discussion

In this section, the above theoretical model is validated by a corre
sponding FE simulation, established using the Structural Mechanics 
(Solid) module of the commercial software COMSOL Multiphysics. 
RTMM is compared to the conventional TMM, accompanied by a 
detailed analysis of the instability inherent in conventional TMM, fol
lowed by a parametric study on both geometric and electric factors.

3.1. Finite element verification

Table 1 lists the geometric and material parameters of the proposed 
meta-beam under investigation. As the previous section introduces, the 
tapered beam segment is discretized in the modelling. Thus, it is 
essential to investigate the impact of the smoothness of the thickness 
variation of the ABH segment first. For ABH beams, the local wave 
number k, founded on the thickness h(x), can be represented as [30,41]: 

k =

(
12ρπ2ω2

Eh2(x)

)0.25

. (43) 

The smoothness condition for the variation in beam thickness re
quires that the spatial variation of the flexural wave number be much 
smaller over a distance on the order of the wavelength. Mathematically, 
this can be expressed as follows: 

dk
dx

1
k

≪k. (44) 

Ht2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0

0 0 0 0 0 0

iEsIsk1r1eik1Li iEsIsk2r2eik2Li iEsIsk3r3eik3Li iEsIsk4r4eik4Li − dEsAsγcos(γLi) dEsAsγsin(γLi)

GsAs(ik1 − r1)eik1Li GsAs(ik2 − r2)eik2Li GsAs(ik3 − r3)eik3Li GsAs(ik4 − r4)eik4Li 0 0

0 0 0 0 0 0

0 0 0 0 EsAsγcos(γLi) − EsAsγsin(γLi)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The change in wavenumber between two adjacent segments with 
thickness of h2 and h1 can be calculated as: 

Δk =

(
12ρπ2ω2

Eh2
2

)0.25

−

(
12ρπ2ω2

Eh2
1

)0.25

. (45) 

Since the thickness of ABH segments is governed by a power profile, 
it is reasonable to infer that the largest change in wavenumber occurs at 
the boundary where the plain segment transitions to the tapered 
segment. Thus, to meet the smoothness condition, a change in boundary 
should satisfy Δk /k2≪1. As shown in Fig. 4. the segment number j is 
plotted versus Δk/k2 at the first three eigen frequencies of the ABH 
segment ω1, ω2, and ω3. The result indicates that when the ABH segment 
is divided into >1000 sub-segments, the value of Δk /k2 is significantly 
smaller than 1 at three natural frequencies. Therefore, discretizing the 
ABH segment into 1000 sub-segments fulfills the smoothness condition.

Fig. 5(a) shows the band structure of the proposed meta-beam with 
the specified parameters listed in Table 1. The dimensionless wave
number along the x-axis is defined as q* = qL/π. Fig. 6 presents the 
transmittance of the proposed meta-beam comprising 6 and 18 unit cells 
(n = 6, 18). As shown in Fig. 5(a) and Fig. 6, the theoretical results agree 
well with the FE simulation.

As shown in Fig. 5(a), the proposed meta-beam produces three band 
gaps, filled in light blue, covering the frequency ranges of [1082.5, 
1100.3] Hz, [2153.3, 2332.1] Hz, and [6388.9, 10,446.1] Hz, 

respectively. In Fig. 5(b), the “stepped piezo” case refers to a configu
ration that includes piezoelectric elements but excludes the ABH struc
ture, while the “double-leaf ABH” case features a purely ABH structure 
without any piezoelectric elements. They are provided as benchmarks to 
highlight the advantages of the proposed design that combines both 
features. It is important to note that all parameters used in the bench
mark cases are identical to those in Fig. 5(a), ensuring a consistent basis 
for fair and meaningful comparison. The band gaps observed in the band 
structures of the stepped piezoelectric meta-beam and the double-leaf 
ABH beam are shaded in light green and yellow, respectively. While 
the first ([1083.0–1100.2] Hz) and second ([2187.1–2517.1] Hz) band 
gaps in the stepped piezoelectric meta-beam closely match those in the 
proposed meta-beam, its third band gap ([8972.7–9734.7] Hz) is 
notably narrower. Additionally, the two band gaps of the ABH beam 
span the frequency ranges of [1972.3, 2328.1] Hz and [6418.6, 9229.7] 
Hz. A comparative analysis with Fig. 5(b) reveals the formation mech
anism for each band gap in the proposed meta-beam. The first band gap 
originates primarily from the piezoelectric effect. The second band gap 
emerges from the overlap between the second band gap of the stepped 
piezo-beam and the first band gap of the double-leaf ABH beam. 
Furthermore, the third band gap is significantly broadened due to the 
combined effect of the third band gap from the stepped piezoelectric 
beam and the second band gap from the double-leaf ABH beam, 
resulting in an even wider band gap in the integrated meta-beam. 
Overall, the proposed meta-beam combines the advantages of both de
signs: its total band gap width is increased by respectively 283.5 % and 
34.3 % compared to the stepped piezoelectric meta-beam and double- 
leaf ABH beam.

It is worth noting that a band gap is theoretically defined as a region 
where the transmittance is below 0 dB. However, Fig. 6 shows additional 
regions that meet this theoretical requirement but cannot be considered 
as band gaps. Thus, the results from band structure analysis, as shaded in 
light blue, are essential as a reference for accurately identifying band 
gaps. Furthermore, the valley profile of the first band gap exhibits 
backward spikes, whereas those of the second and third band gaps 
remain smooth. This distinction suggests that the first band gap is 
induced by local resonance, while the third primarily arises from Bragg 
scattering mechanisms [77]. Fig. 6(a) demonstrates a computational 
collapse in the conventional TMM results at high frequencies. Further
more, as shown in Fig. 6(b), a similar numerical instability occurs even 
in low-frequency domains when the number of unit cells increases. 

Fig. 5. Band structures of (a) proposed meta-beam with band gaps shaded in blue, (b) stepped piezoelectric meta-beam and double-leaf ABH beam with band gaps 
shaded in light green and yellow respectively. Total band gap width of proposed meta-beam is increased by respectively 283.5 % and 34.3 % compared to the stepped 
piezoelectric meta-beam and double-leaf ABH beam.

Fig. 4. Δk/k2 decreases with the increment of segment number j at first three 
eigen frequencies of ABH segments.
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Mathematically, the conventional TMM accumulatively multiplies local 
transfer matrices to produce a global transfer matrix, which is then 
applied with boundary conditions: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
Tn− 1 − I

]
[

ψ1

ψn

]

= 0

[
K1 0

0 Hn

][
ψ1

ψn

]

=

[
B.C.

B.C.

] (46) 

where B.C. represents the boundary conditions. Rewriting the Eq. (46), a 
12 × 12 global transfer matrix T* can be obtained, in which elements 
with high magnitudes are located intensively.

This ill-conditioned matrix arises from either: (1) the direct multi
plication of high-frequency components, or (2) the cumulative effect of 
successive multiplications of local transfer matrices. For instance, Fig. 7
(a) plots the heat map of T* at 8 kHz for the 6 unit cell meta-beam, where 
the failure had already begun. It is evident that the magnitudes of ele
ments vary so remarkably that T* becomes ill-conditioned. As a refer
ence, the change in the conditional number of T* is plotted in Fig. 7(b), 
in which the magnitude of the condition number keeps soaring up with 
the increase of frequency. Therefore, directly solving Eq. (46) using a 

basic algorithm becomes particularly challenging, especially in high- 
frequency domains or when dealing with structures containing a large 
number of unit cells.

In contrast, RTMM utilizes modal coordinates through a series of 
recursive equations rather than state coordinates as in conventional 
TMM. This approach significantly reduces the multiplication and, 
consequently, magnitudes of the matrix entries. Additionally, RTMM 
decomposes the transfer matrix into four sub-matrices, as shown in Eq. 
(39), storing zero elements in one of the sub-matrices in the first itera
tion. As a result, the disparity in magnitudes of the entries within each 
sub-matrix is reduced. Consequently, RTMM avoids the emergence of an 
ill-conditioned T*, thereby improving the stability of the conventional 
TMM. Furthermore, compared to SEM, which is also a stable approach, 
RTMM offers superior computational efficiency. SEM constructs the 
global dynamic matrix by summating individual element matrices, a 
process that inherently increases the matrix dimension [28], particularly 
for complex metamaterials consisting of many unit cells. This matrix 
dimensional expansion significantly increases both computational time 
and memory consumption, posing challenges for large-scale systems. In 
contrast, RTMM preserves a constant matrix dimension by employing 
successive matrix multiplications, thereby reducing computational 
overhead and memory requirements. Additionally, by leveraging a 
recursive formulation presented in Eq. (41), RTMM further minimizes 

Fig. 7. Cause of failure in conventional TMM. (a) Heat map of an ill-conditioned global transfer matrix T* magnitude at 8 kHz. Color bars from blue to yellow 
represent magnitudes from small to large. (b) Rapid increase in condition number of T* with increment of frequency.

Fig. 6. Transmittance of proposed meta-beam with band gaps shaded in blue obtained using FEM, RTMM, and conventional TMM: (a) 6 unit cells, (b) 18 unit cells. 
Numerical failures can be found in high and low frequency domains respectively with conventional TMM.
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the computational resources needed. This efficiency advantage makes 
RTMM particularly well-suited for modeling metamaterials with a large 
number of unit cells, where the drawbacks of SEM become pronounced.

3.2. Experimental validation

To further validate the theoretical predictions derived from the 
RTMM method, a 6-unit-cell meta-beam prototype was fabricated using 

3D printing and then experimentally tested. Polylactic Acid (PLA) was 
selected as the printing material due to its printability and cost- 
effectiveness. To accommodate manufacturing constraints, the phys
ical prototype dimensions were optimized as follows: LABH = 0.02 m, Lp 
= 0.0215 m, b = 0.02 m, Lt = 0.01 m, h0 = 0.0006 m, hp = 0.0002 m, and 
hs = 0.002 m. The PLA substrate has a Young’s modulus Es of 3.15 GPa, 
shear modulus Gs of 1.17 GPa, and a density ρs of 1240 kg/m3. For the 
piezoelectric material, PZT-5H was used for its superior performance 

Fig. 9. (a) Diagram of Antoniou’s synthetic inductor circuit, and (b) Proposed meta-beam samples fabricated using spring steel and PLA substrate.

Fig. 8. Overview of experimental setup.
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and availability, with material properties of CE
11 = 60 GPa, CS

55 = 23 GPa, 
and ρp = 7500 kg/m3. The thickness profile follows a power-law dis
tribution defined by smoothness coefficient ε = 16 and m = 2. The 
equivalent inductor Ld is set to be 1 H, which is determined by 

Ld =
R1R3R4C1

R2
. (47) 

The experimental configuration is illustrated in Fig. 8. Harmonic 
vibrations spanning 100–1000 Hz were generated using Econ VCS 
software, with a vibration controller (Econ. VT-9002) transmitting user- 
defined signals to a shaker (Econ. EDS) via a power amplifier (Econ. 

VSA-H102A). Displacement responses at the beam’s free end were 
measured and recorded using a laser Doppler vibrometer (Soptop. LV- 
S01) synchronized to a dedicated controller. Notably, Antoniou’s syn
thetic inductor circuit [78], as shown in Fig. 9(a), was integrated into 
the setup with a DC power supply to mitigate parasitic resistance effects, 
thereby preserving the fidelity of the l-C resonance [79]. Fig. 9(b) shows 
the two proposed meta-beams with spring steel and PLA as the substrate 
material. Transmittance was calculated using Eq. (42).

Experimental measurements identified two prominent band gaps: 
494–528 Hz (attributed to LR effect) and 634–980 Hz (associated with 
BS effect), as shown in Fig. 10. These measured ranges exhibit slight 
upward shifts compared to theoretical predictions (480–522 Hz and 
608–965 Hz). The geometric deviation is one of the key factors 
contributing to the above discrepancy. Manufacturing tolerances 
inherent in 3D printing and adhesive bonding processes introduce 
thickness variations, which alter bending stiffness and, as a result, per
turb band gap positions.

Fig. 11(a) demonstrates the transmittance contrast between the 
active (DC-powered) and passive (short-circuit) configurations. Acti
vating the synthetic inductor circuit via DC power reduces transmittance 
from –0.87 dB to –7.80 dB, confirming enhanced l-C resonance efficacy 
in creating a deep band gap. In addition, Fig. 11(b) shows a fivefold 

Fig. 10. Transmittance obtained by theoretical simulation and experiment with band gaps shaded in red and blue respectively.

Fig. 11. Experimental verification: (a) Comparison of measured transmittance around the first band gap, where transmittance drops with active state. (b) Measured 
displacement decreases significantly after DC power supplement. (c) Transmittance of spring steel fabricated meta-beam obtained by theoretical simulation 
and experiment.

Fig. 12. Schematic of Bezier thickness profile governed tapered segment with a 
local coordinate system and three control points.
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Fig. 13. Properties of cosine, exponential, quadratic power law, cubic power law, and Bezier thickness profiles. (a) Thickness ht at tapered segment. (b) Phase 
velocity cph along tapered segment at 8 kHz.

Fig. 14. Band structures with (a) cosine, (b) exponential, (c) cubic power law, and (d) Bezier thickness profiles with band gaps shaded in blue, red, green and yellow 
respectively.

Fig. 15. Effect of control point P1 on band gaps. P1 moves (a) horizontally, and (b) vertically. Second band gap tends to broaden with P1 moving towards corner.
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displacement reduction (from 5 μm to 1 μm) at 511 Hz (the deepest 
valley of the first band gap) after DC power is applied, demonstrating the 
profound efficiency in vibration suppression.

The discrepancy in the high-frequency domain is noteworthy, as the 
experimental transmittance consistently appears lower than the theo
retical prediction. Additionally, signal contamination from parasitic 
vibrations introduces noise, obscuring the expected smooth trans
mittance valley. These issues are primarily attributed to the pronounced 
damping effect in the high-frequency domain [80]. For instance, around 
900 Hz, an unexpected resonant peak appears with a transmittance 
value below 0 dB. According to fundamental principles of vibration and 
dynamics, resonance typically results in significant structural vibrations, 
often yielding transmittance values well above 0 dB. The fact that this 
peak remains below 0 dB indicates an exceptionally high damping effect 
within the system. To address these limitations, a spring steel 
meta-beam sample, depicted in Fig. 9(b), was tested across an extended 
range of 1000–2500 Hz. As shown in Fig. 11(c), this configuration 
achieves improved coherence between experimental and simulated re
sults, without the noise induced by the material damping. The enhanced 
agreement validates the efficiency of RTMM in predicting the band gap 
for the proposed meta-beam.

3.3. Parametric study

Based on the theoretical model established, the influences of the 
thickness profile and electric parameters are thoroughly investigated. 
The default geometric and material parameters are the same as those in 
Table 1.

3.3.1. Influence of thickness profile
As introduced in earlier sections, the thickness of the ABH indenta

tion is conventionally governed by the power law profile, ht(x) = hs −

2(εxm + h0). In addition to the power law, other thickness profiles that 
taper to approximately zero thickness at the edge of a segment can also 
produce a similar ABH effect. While higher-order power law, exponen
tial, and cosine profiles have been discussed and compared in terms of 
energy dissipation and wave reflection [81], this paper investigates the 
influences of these profiles and the Bezier thickness profile on the band 
gap phenomenon. The formula of the Bezier profile in each tapered 
segment can be written as: 
{

x(t) =
(
1 − t2)x0 + 2t(1 − t)x1 + t2x2

y(t) =
(
1 − t2)y0 + 2t(1 − t)y1 + t2y2

, t ∈ [0,1] (48) 

where P0 (x0, y0), P1 (x1, y1), and P2 (x2, y2) are the three control points 
of each tapered segment, as shown in Fig. 12.

It is worth noting that the length of the tapered segment Lt, the 
thickness at the junction, and the truncated edge remain constant across 
all the profiles, as plotted in Fig. 13(a). To further study the influences of 
different thickness profiles, the change in phase velocity at 8 kHz is 
shown in Fig. 13(b). Using local wave number k obtained by Eq. (43), the 
phase velocity cph is defined as: 

cph =
ωπ
k
. (49) 

As depicted in Fig. 13, the phase velocities of the wave in both 
profiles decrease as the thickness decreases, indicating that most of the 
energy dissipation occurs at the thinnest point, where the wave is 
concentrated. From an energy perspective, since the phase velocity of 
the Bezier profile, shown in Fig. 13(b), is consistently smaller than that 
of the other profiles, it is reasonable to deduce that the energy dissipa
tion in the Bezier profile is greater than in other profiles before reaching 
the thinnest point. Consequently, the Bezier profile may produce a wider 
band gap in the band structure.

To validate the aforementioned deduction, the band structures for 
different thickness profiles are plotted in Fig. 14. It is evident that the 

second and third band gaps are sensitive to changes in thickness profiles. 
The widths of the band gaps are correlated with the phase velocities. 
Specifically, profiles with higher phase velocities lead to narrower band 
gaps, as shown in Fig. 14(a) and (b), while those with lower phase ve
locities result in broader band gaps, as depicted in Fig. 14(c) and (d). 
Notably, the Bezier profile, which exhibits the lowest phase velocity in 
Fig. 13(b), produces the broadest second and third band gaps, as illus
trated in Fig. 14(d).

Furthermore, Fig. 15 unveils the impact of control points on the 
formation of the second and third band gaps. Since the first band gap is 
insensitive to the changes in thickness profiles, it is not discussed here. 
Control points P0 and P2 are fixed to maintain the initial and terminal 
thickness, as well as the length of the indentation. As the free point P1 
shifts horizontally and vertically, as depicted in Fig. 15(a) and (b), both 
the second and third band gaps attain their broadest when P1 is posi
tioned at the terminals. This movement towards the terminals lowers the 
thickness profile, as shown in Fig. 13(a), with a corresponding decrease 
in phase velocity in Fig. 13(b). The influences of the free control point on 
band gaps further support the earlier conclusion that a lower phase 
velocity leads to a wider band gap.

3.3.2. Influence of electric parameters
As depicted in Fig. 6, the valley profile of the first band gap features a 

sharp spike, while those of the second and third band gaps are smooth. 

Fig. 16. Influence of inductance on band gap formation, with critical induc
tance of 0.28 H for band gap coupling.

Fig. 17. Transmittance of meta-beam with LR and BS band gaps shaded in pink 
and blue, respectively. (a) Ld = 0.2 H, (b) Ld = 0.28 H, (c) Ld = 0.4 H LR and BS 
band gaps merge as a wider band gap at inductance of 0.28 H.

J. Zhang et al.                                                                                                                                                                                                                                   International Journal of Mechanical Sciences 296 (2025) 110312 

13 



From this, we can deduce that the first band gap is primarily due to local 
resonance, and the second and third band gaps are attributed to Bragg 
scattering [77]. To explore the possibility of merging the LR and BS band 
gaps into a wide, combined band gap, the influence of the inductance on 
the band gap formation is prioritized. As illustrated in Fig. 16, the LR 
and BS band gaps, shaded in pink and blue, approach and separate from 
each other as the inductance varies. Notably, at an inductance of 0.28 H, 
the two band gaps converge to form a combined band gap.

In addition, Fig. 17 compares the transmittance of a 6-unit meta- 
beam with the critical inductance of 0.28 H and two adjacent in
ductances, 0.2 and 0.4 H The suppression regions induced by LR and BS 
effects, are shaded in pink and blue, respectively. As depicted in Fig. 17
(b), while there is a peak, the two band gaps remain distinguishable by 
referencing Fig. 16, overlapping to form a wider, combined suppression 
region. The suppression region ranges are [1934.3, 2318.9] Hz and 
[2706.5, 2799.0] Hz in Fig. 17(a), and [1800.0, 1949.6] Hz and 
[2105.2, 2358.1] Hz in Fig. 17(c). Compared to the total bandwidth of 
the discrete suppression regions of meta-beam with inductances of 0.2 H 
and 0.4 H, the overlapped suppression region, ranging from 1906.6 Hz 
to 2443.0 Hz, is increased by 12.4 % and 33.2 %, respectively.

4. Conclusions

This study has demonstrated that integrating double-leaf ABH con
figurations with adaptive piezoelectric shunting circuits enables ultra- 
broadband vibration suppression through synergistic physical mecha
nisms. The proposed meta-beam effectively combines piezoelectric and 
ABH effects, resulting in the formation of three wide band gaps. To 
address the computational limitations of conventional TMM in high- 
frequency domains, a theoretical model was developed using the 
RTMM. The accuracy of the model was validated against an FE model. 
Furthermore, an experimental study was conducted to further validate 
the proposed meta-beam, using an equivalent circuit to emulate induc
tive components.

Compared to conventional piezoelectric and ABH meta-beams, the 
proposed meta-beam achieves a 283.5 % and 34.2 % wider total band 
gap range respectively. In addition, the effects of ABH indentation 
thickness profiles on band gap formation were investigated, along with a 
discussion from the energy perspective. Among various profiles, the 
Bezier profile was notable for inducing the widest band gap. Further
more, the tunability of the meta-beam was explored through a para
metric study on inductance, where a wider unified suppression region 
was realized by merging the LR and BS band gaps through inductance 
tuning.

Overall, this study presents a new paradigm for metamaterial design 
by seamlessly integrating multi-physics coupling strategies, surpassing 
the limitations of single mechanism approaches. The demonstrated vi
bration control capabilities make this meta-beam design a highly 
promising solution for broadband and tunable vibration suppression.
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