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Piezoelectric materials and acoustic black hole (ABH) effects have been individually studied for vibration sup-
pression, yet their combined potential in metamaterial design remains largely unexplored. This study introduces
a novel metamaterial beam (meta-beam) that integrates both mechanisms: a double-leaf ABH configuration for
broadband vibration suppression and tunable piezoelectric shunting circuits for adaptive resonance control. To
overcome the inherent computational limitations of conventional transfer matrix methods in transmittance
prediction, a Riccati transfer matrix method (RTMM) is developed to significantly enhance computational sta-
bility. Theoretical predictions are rigorously validated against finite element (FE) simulations and experimental
results. The proposed meta-beam achieves a 283.5 % and 34.2 % wider total band gap range compared to
conventional piezoelectric and ABH meta-beam designs, respectively. A comparative analysis highlights the
influence of ABH indentation thickness profiles on band gap formation, interpreted from an energy perspective.
In addition, the tunability of the meta-beam is explored by adjusting the shunt circuit inductance, facilitating the
merging of local resonant and Bragg scattering band gaps into a unified one. These findings demonstrate the
synergistic potential of piezoelectric-ABH integration in developing high-performance metamaterials with

enhanced and customizable vibration control.

1. Introduction

Metamaterials with unique characteristics, particularly those
leveraging the band gap phenomenon to suppress acoustic or elastic
waves [1-4], have garnered significant research interest. From the
perspective of the formation mechanism, band gaps can be categorized
into local resonant (LR) [5,6] and Bragg scattering (BS) types [7,8].
Early studies employed mechanical oscillators to generate LR band gaps
[9-11]. However, those systems suffered from limited tunability and
bulky sizes, hindering practical implementation. To address above
challenges, piezoelectric metamaterials with inductive or capacitive
shunt circuits were proposed, leveraging electromechanical coupling
effects. Utilizing these effects, piezoelectric transducers, easily attached
to the target structure, can generate LC resonance and controllable band
gaps, capitalizing on the high transformability of the shunting circuit.
Pioneering work by Thorp et al., [12] periodically placed shunted
piezoelectric patches along rods to control the longitudinal wave prop-
agation. Following the same idea, piezoelectric metamaterials found
extensive application in the vibration suppression of plates [13-16] and
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beams [17-20]. Additionally, negative capacitances [21-23] and
nonlinear shunt circuits [24-26] were employed to enlarge the band-
width of band gaps. However, physically connected periodic arrange-
ment designs for piezoelectric metamaterial beams (meta-beams) are
impractical due to the challenges in ensuring electrical insulation be-
tween neighboring unit cells, not to mention the difficulty in imple-
menting the electrodes. Consequently, stepped configurations were
proposed [27-29], where only half of the unit cell was covered by a
piezoelectric patch, leaving the other half free for electrode installation.

Unlike piezoelectric metamaterials relying solely on electrome-
chanical coupling, acoustic black hole (ABH) structures exploit geo-
metric tailoring for vibration suppression. ABH structures, characterized
by a thickness gradually approaching zero according to a power law, can
effectively manipulate and reflect flexural waves [30]. Pekeris [31] first
discovered the phenomenon of sound velocity decreasing to zero as it
travels through a non-uniform stratified fluid. Subsequently, Mironov
[32] proposed the concept of ABH and applied it to the vibration sup-
pression of plates. Various structures with ABH indentations have been
proposed, including single-leaf beams [33,34], double-leaf beams [35,
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36], V-shaped beams [37], and pillars [38,39]. Notably, double-leaf
ABH beams have been shown to generate a wider first band gap by
incorporating both LR and BS effects [40]. Techniques such as graded
strategies [15,20,34] and the use of dynamic vibration absorbers [41]
have been employed to broaden the widths of band gaps in ABH struc-
tures. However, it is important to note that ABH effects primarily occur
above a characteristic frequency where the wavelength becomes smaller
than the ABH feature size. This threshold frequency, known as the cut-on
frequency, serves as a key indicator for evaluating the effective opera-
tional range of a single ABH segment [42]. Recent advances incorpo-
rating metamaterial concepts have demonstrated that ABH meta-beams
can achieve wide band gaps and effective wave suppression even below
this cut-on frequency [43,44]. Nevertheless, a significant challenge re-
mains in enhancing the tunability of ABH structures without requiring
complex geometric modifications.

Theoretical methods play a crucial role in investigating band gaps
and wave propagation in metamaterials. Various methods, including the
spectral element method (SEM), plane wave expansion (PWE) method,
and Rayleigh-Ritz method (RRM), have been developed and widely
employed for band gap analysis. Among them, the transfer matrix
method (TMM), originally developed by Targoff [45], remains one of the
most prevalent approaches, particularly for metamaterials modeled
using Euler-Bernoulli or Timoshenko beam theory. Compared to SEM
[46-48], which offers high accuracy at the expense of significant
computational cost, TMM provides a balance between efficiency and
analytical tractability. Unlike PWE [49,50], which is well-suited for
infinite periodic structures but less effective for finite systems, TMM
excels in calculating the transmittance of finitely long systems with a
limited number of unit cells. Additionally, while RRM [35,51] is effec-
tive in capturing eigenmodes of low degree-of-freedom systems, it lacks
the versatility and flexibility for analyzing complex metamaterial ar-
chitectures. Overall, TMM is distinguished by its relatively high
computational efficiency and the notable advantage that it does not
require derivation of the global dynamic equations of the system. After
discretizing the beam into segments, TMM is applied to both single-leaf
[41,52] and double-leaf [53] ABH structures by assembling the transfer
matrix of each segment based on Euler-Bernoulli beam theory. TMM has
also proven to be efficient in band gap prediction for piezoelectric
metamaterials [12,54]. However, a recent study by Hu et al., [28]
pointed out that applying conventional TMM to a piezoelectric coupling
system leads to a collapse in transmittance calculations in the
high-frequency domain. This collapse is caused by numerical instability
due to the successive multiplication of transfer matrices. To improve the
accuracy and stability, the Riccati transfer matrix method (RTMM), first
proposed by Horner et al., [55], offers an effective solution. RTMM
combines the Riccati transformation with TMM to reduce the matrix
magnitude, thereby providing stable calculation results. RTMM has been
widely applied to model chain systems [56,57], single-leaf ABH beams
[53,58], and multibody systems with closed loops [59], demonstrating
high accuracy and stability across a range of problems.

Recent research has explored the application of piezoelectric trans-
ducers on ABH structures. Deng et al., [60] attached piezoelectric layers
to an ABH bimorph cantilever for energy harvesting and developed a
semi-analytical model for simulation. Building on this, Li et al., [61]
utilized resistive and inductive shunt circuits on a similar bimorph
cantilever to enhance energy harvesting efficiency. While piezoelectric
ABH structures have been widely explored for energy harvesting
[62-64], their integration has also shown significant promise for vi-
bration suppression [65]. Conventional approaches typically attach
piezoelectric patches to ABH structures to reduce vibrations via shunt
damping techniques [66-70]. For instance, Wan et al., [71] enhanced
the vibration suppression performance of ABH plates below the cut-on
frequency using piezoelectric shunt damping, while Wang et al., [72]
employed passive strategies with piezoelectric elements to exploit the
ABH effect for absorbing medium to high-frequency waves through
localized damping. Further advancements introduced electrical
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nonlinearity to standalone ABH beams, improving tunability in vibra-
tion suppression [73] and enhancing low-frequency performance [74].
However, these studies primarily focus on shunt damping applications
in standalone ABH structures, with limited exploration of
piezoelectric-ABH coupling in metamaterial beam designs, particularly
concerning hybrid band gap formation and merging. A notable excep-
tion is Chen et al., [75], who combined piezoelectric metamaterials with
a single-leaf ABH structure, though their work lacked experimental
validation. More recently, Wu et al., [76] proposed a similar meta-beam
but emphasized machine learning-based optimization of the vibration
suppression region. Compared to those single-leaf configurations, the
double-leaf ABH structure offers a broader first band gap, presenting a
key advantage. To address these research gaps, this study introduces a
novel piezoelectric meta-beam with a double-leaf ABH configuration,
employing RTMM for precise transmittance prediction and investigating
the synergistic effects of piezoelectric and ABH induced band gaps for
broadband vibration suppression.

This paper is structured into five sections. Following the brief
introduction in the first section, Section 2 presents a theoretic analysis of
the proposed meta-beam based on the Timoshenko beam theory, where
the band structure and transmittance response are predicted. Section 3
provides validation through the finite element (FE) simulation and ex-
periments, along with an investigation of band gap tunability, including
discussions on the dependence of geometric and electric parameters.
Finally, Section 4 summarizes the key findings and highlights the merits
of the proposed meta-beam.

2. Theoretical modelling using Riccati transfer matrix method

This section provides a comprehensive overview of the structural
design and theoretical model of the piezoelectric meta-beam with the
double-leaf ABH configuration. First, a graphical representation illus-
trates the geometric design of the proposed meta-beam. Subsequently,
the governing equations are derived using the Timoshenko beam theory.
The band structure is calculated using the TMM and Bloch’s theorem,
and transmittance is predicted by RTMM.

Fig. 1 illustrates the piezoelectric meta-beam with the double-leaf
ABH configuration. In the local coordinate system, the x-axis is along
the length direction, and the y-axis is the width direction. Within a unit
cell, the double-leaf ABH beam has a length of Lagy, with an indentation
length of L, and the piezoelectric-covered beam has a length of L. The
thicknesses of the substrate and piezoelectric patches are, respectively,
hs and hy. The thickness of the ABH indentation h; is governed by the
ABH profile, h;(x) = hy — 2(ex™ + hg), where ¢ and m represent the
smoothness coefficient and the power order, respectively. hy denotes the
thinnest thickness of the substrate. It is worth mentioning that m should
be greater than or equal to 2. Additionally, the widths of all the beams
are identically equal to b.

As depicted in Fig. 2(a), the top and bottom piezoelectric layers in
each unit cell are connected in parallel and shunted to an external
inductance circuit, with the inductance of L4. Fig. 2(b) shows the
equivalent circuit of a single segment of the piezoelectric beam, with G,
representing the internal capacitance of the in-parallel connected
piezoelectric layers.

2.1. Governing equations

As introduced in Section 1, previous studies of tapered ABH segments
typically simplify them as stepped Euler-Bernoulli beams composed of
multiple segments with constant thickness. However, after discretiza-
tion, these stepped beams no longer satisfy the slender beam assumption
for Euler-Bernoulli beams. To address this issue, this paper employs
Timoshenko beam theory to improve modelling fidelity and predictive
capabilities.

According to the prevailing norm on piezoelectricity, the coupling
between the elastic and electrostatic properties of piezoelectric patches
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Fig. 1. Proposed piezoelectric meta-beam with double-leaf ABH configuration.
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Fig. 2. Schematic of circuit connections. (a) Close-up view of shunt circuit connection, and (b) equivalent circuit of piezoelectric beam.

can be expressed as follows:

& St 0 da|[g,
| =10 S& 0|5, (€))
Dy d31 0 & 3T. 3 E3

where g, and y, represent the longitudinal and shear strain along the
beam’s length and thickness directions, respectively. Correspondingly,
op and 7, are the longitudinal and shear stresses. D3 is the electric
displacement, and Ej is the dielectric field in the thickness direction. S£;
and SE; are the elastic compliance constants. ds; is the piezoelectric
constant. The stresses can also be expressed in terms of strains:

op C'11)1 0 —hz &p
=] 0 C O Tp | )
Es —hyz; O ﬁg " Ds

where C?, and CZ; are elastic stiffness constants. f3, is the permittivity
constant, and hg; is the piezoelectric constant. As the commercial FE
software, COMSOL, requires piezoelectric properties to be input in
stress-strain form {C¥,, CE;, es1, ¢35}, the relationship between the
different sets of piezoelectric constants can be derived as:

T
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ci €355T — di
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Considering the small deflection assumption, the strain components
in the substrate and piezoelectric material can be represented as func-
tions of the transverse displacement w(x, t) and rotational angle of the
cross-section ¢(x, t) at the position x and time instant t

0p(x,t)

ox

ow
Vs =Vp = ¢(X7 t) - éz’ t)

& =6 =

C)

Considering the Young’s modules E; and shear modules G; of the
substrate, the relationship between stresses and strains in the substrate
and piezoelectric patches can be expressed respectively as:

os = Eseg Op = Cﬁ)lep - D3h31 (5)
7 = Gsrs " | 1, = Clgy,-
Based on Eq. (5), the governing equations of the piezoelectric meta-
beam, in terms of transverse displacement w(x, t), rotation angle ¢(x, t),
and longitudinal displacement u(x, t), can be derived by applying
Hamilton’s principle [28]:

~ *w(x, t) ~ [op(x,t)  Pw(x,t) _
PA—Ge— TrGA { x| oae } =0 ©
Poplx,t ~ [ow(x,t ~ PP(x,t
D, 0)(c2 )+KGA [ éx )fqﬁ(x, t)} fplz%: 0, @
2
A Pulx,t) i ? u(x,t) 0. ®

0x? o2

where pA = phb+ 2phb, GA = Gihsb+ 2C%hyb, pl, = p3+

2p,E,EA = Eshsb + 2CP  hyb with I and E representing the moment
inertias of the cross section area of the substrate and the piezoelectric
patch respectively. Under the open-circuit condition, the following
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holds: D; = EI + 2CP, If — 2h,bh2,h3, /35, in which, hg, is the thickness
difference between the substrate and piezoelectric patch. « is the shear
correction factor.

Assume the external shunt circuit is an inductive circuit, as shown in
Fig. 2, the governing equation of the circuit can be obtained by applying
Kirchhoff’s law:
dip (t)

Pp(L,t) *P(0,t)
dt oz o2

dv(t) (1)
— Lp dt2 - Lfd’ (9)

where i,(t) represents the current, and v(t) is the voltage. The equivalent
capacitance C, of the in-parallel connected circuit is governed by C, =
2¢5.bL,/h,, while the constant ¢ is defined as 0 = 2bhgyds; /SE;.
Considering a harmonic excitation and the steady-state response, w(x, t),
¢(x, t), ulx, t) and v(t) can be expressed as a product of an amplitude
function and a time function using the variable separation method, i.e.,
wix, © = W)™, p(x, ) = e, ulx, ) = U)e and v(D) = Vel in
which o is the circular excitation frequency. Subsequently, the gov-
erning equations Egs. (6)-(9) can be rewritten as:
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wherer, = i(kﬁ - k4G) /kn, and Bp, represent the state coordinates (n =1,

2, ...,4). The bending moment M(x) and shear force Q(x) can be derived
as:

M(x) = Dta(gix)
17)
Q(x) = GA ‘)V:;(Cx) - @(x)]i

Besides, the longitudinal displacement and axial force can be ob-

tained in terms of the coordinates C, (n = 1, 2), with y> = wzpjél /E?\ :

{ U(x) = C;sin(yx) + Cycos(yx) 18)

N(x) = EA y[C1cos(yx) — Casin(yx)].

Thus, the modal coordinates Sy(x) containing transverse displace-
ment, rotation angle, bending moment, shear force, longitudinal
displacement, and axial force in a piezoelectric segment can be
expressed in the matrix form:

S$,(0) =Ky
~ o |BW(x) dd(x 7 pre 19
®*pA W(x) + kGA dxg ) dfc )| 0, (10) Sp(Lp) = Hyy,,
where the modal coordinates S(x) = [W(x), ®(x), M(x), Q(x), U(x), N
Dtdzcb(x) 1 xGA {dW(x) _ @(x)} T+ w2 p} ®(x) =0 an 1. y, represents the state coordinates of the piezoelectric segment, i.
Z - I’
dx? dx e., Yp = [B1,B2,B3,B4,C1,C>]", with
- ekl ikl lkslp eikalp 0 0 -
n kil r eikelp rs eikalp ikysLp 0 0
iDtkl r eileP iD[kzrz eiksz iD[k3r3 eiksLP iDtk4 Ty eik“L" 0 0
Hy=| ~ . ~ . ~ . ~ ]
P GA (iky — )" GA (iky — r)e*™  GA (ks —r3)e®*  GA (iks — ry)e™er 0 0
0 0 0 sin(yL,) cos(yLy)
L 0 0 0 EA yeos(yLy) —EA ysin (vLp) 4
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2
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—@?*0[@(L) — ®(0)] + 0*C,V = " (13) P71 GA (iky —11) GA(iky—12) GA (iks—r13) GA(iky—14) O O
d 0 0 0 0 0 1

The general solution for the transverse amplitude W(x) and rotation
angle ®(x) can be assumed as:

{ W(x) = Be* 14)

®(x) = rBe™.

Substituting Eq. (14) back into Egs.(10) and (11) yields an eigen-
value problem. The roots of the eigenvalue problem can be derived as:

k
ky = —ky = 7%\/%2 + /K + 4(1 - mkg)
kF\/ 2
ks = kg = —— 1 [nk? —
3 4 \/ﬁ nkg
0.

~ 025 ~  ~\025 -~
where kp = \/5<pA /Dt) ke = \/5<pA /KGA) ,n=pl /pA +D;

/KGAA ,and n; = ,(;I /pﬁA . Subsequently, Eq. (14) can be rewritten as:

(15)

°ky +4(1 —mkS),

{ W(X) = Bleiklx + Bzeikzx +B3eik3x + B4eik4x w6

D(x) = r1B1e%% + ryBye® ™ + ryBae®s*  ryBeex,

0 0 0 0 EAy 0

Additionally, Eq. (13) can be reformulated with a constant g, which is
defined as g = Ldmze/ (deZCp -1
V = gl@(L) — @(0)]. (20

The bending moments induced by the piezoelectric effect can be
derived as:

M=0V. 21
Thus, combining Egs.(20) and (21), Eq. (19) is updated with extra

bending moments:

5,(0) = (K, + Gy,

22
Sp(Ly) = (Hy + Gy, @2

where
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(28)

As shown in Fig. 3, the geometric relationship between the tapered

J. Zhang et al.
1 2 -1 j
Fig. 3. Force analysis between plain and tapered segments with an equivalent treatment of tapered section.
0 0 0 0 00
0 0 0 0 00 Ty = v;
G | 80ri (e —1) gora(e"*'r —1) gors(e"*"” —1) ghry(e™ ~1) 0 0 T, = K;'Hj 1K\ Hy . Ky Hy
B 0 0 0 0 0o0|"
0 0 0 0 00
0 0 0 0 00 segments 1 and 2 can be expressed as follows:

Fig. 3. depicts the force analysis between segments, with the ABH
segment divided into plain segments pl,1 and pl,2, and tapered segments
t,1 and t,2. It is worth mentioning that the subscripts I and O indicate the
input and output of a segment. Additionally, the tapered segments are
treated as a combination of j plain segments.

Similar to Eqgs.(6)-(8), the governing equations in the transverse and
longitudinal direction of a plain beam member are as follows:

d*w;(x, t) de(x,t)  dwi(x,t)|
PiAi Fo kGsA; b D =0, (23)
d2p;(x,t) dw;(x, t) B (x,t)
Pl 3 + kG, {4;1. (x,8) = } ~EI— 15 =0, (24)
A azui(x7 t) _EA azui(x7 t) ) (25)
Psi 2 sf1i o2 =Y,

where A; and [; represent the cross-sectional area and moment inertia of
the cross-sectional area of discrete segments, respectively. wi(x, t), u;(x,
t), and ¢i(x, t) stand for the transverse and longitudinal deflections and
the rotation angle of the beam cross-section. Since the solutions to Egs.
(23)-(25) resemble those of the piezoelectric segment, the derivation
details are omitted. The modal coordinates of each segment can be
expressed as:
S$i(0) = Ky,

Si(Li) = Hyy;, 26)
where L; is the length of the discrete segment. The continuity condition
between jth and (j + 1)th segments in the tapered segment can be
written as:

Qj(Li) = Qj+1 (0) 27)
Uj(Li) = Up1(0) + djj11(0)
Nj(Li) - Nj+1 (0)

It is worth noting that the thickness difference d; between each discrete
segment cannot be ignored. As a result, the contribution of axial forces to
bending moment calculation should be considered to improve accuracy.
Rewrite Eq. (27), and the relationship between the first and the last
segment can be written in a matrix form with a local transfer matrix Ty

Wa (0) = Wi2(0)

1 (0) = @2(0)

Un (0) = Ux(0) + 2d® (0) (29)
Wa (L) = Wea (L)

@1 (L) = Pea(Le)
Ua (L) = U (L;) + 2d®y (L),

where d denotes the distance between the two shape centers of tapered
segments 1 and 2. Reformulating Eq. (29) in a matrix form yields:

AWy, =By, (30)
A B dr1 7dr2 7dr3 7dr4 01
whereA:{AlT},B:{BlT},A =1 1 1 1 00},
2%t 2%t r ra r3 T4 00
—drie®h —drye™h —drse™h —drue™ sin(yL;) cos(yL;)
Ag — elk1 L elkng elk3Lj elk4Lj
refli ekl pgelksli ekl

-drl er drg dr4 0
Bi=1|1 1 1 1 0 0,

r ry rs T4

and

[drie®s  droe®eh  drie®sh  drse®  sin(yL;) cos(yL;)
By—= | ekl kol Gl gkl 0 0

L refil rpefeli pgefsl el 0 0

Besides, ym 1 represents the state coordinates of the first segment in the
tapered segments 1 and 2. In addition, the continuity condition between
plain and tapered segments can be represented as:

Wi (Lpt) = Wi (0)
Dp1 (L) = P (0)
My (Lpi) = M (0) + My (0) + dNi (0) —
Q1 (Lp)) = Qu(0) + Q2(0)
1( pl) Utl(o) +d(l)tl( )
Npia (Lpt) = N (0) + Nio(0).

dNtz(O) (31)
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Wi (L) = Wpi2(0)
@ (L) = Dpi2(0)
Mtl (Lt) + Mtz( t) + dNtl (Lt) - dNtz(Lt) = Mpl.z (0)
(32)
Qi (L) + Qui2(Ls) = Qu2(0)
Utl (Lt) + dq)tl (Lt) = UpLz (0)

Nu (Lt) +N[2( ) Npl,2(0)-
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Table 1
Structural parameters of proposed meta-beam.
Geometrical Parameters Value Material Parameters Value
Substrate beam length Lygy =~ 0.02 m Substrate Young’s 100 GPa
and L, modulus E;
ABH segment length L, 0.01 m Substrate shear modulus 40 GPa
G
Substrate beam thickness 0.002 m Substrate density ps 7165 kg/

hs m?

Piezoelectric patch 0.0004  Piezo layer Young’s 66 GPa
where thickness h,, m modulus Cp,7
Spin(x) = [Wora (), @pin (%), Mppn (%), Qpin (%), Upn (%), Nppn (%) ] Trepresents Beam width b 0.02m :Ezilljz eCrsz? ear 21 Gpa
the modal coordinates of the plain beam segments 1 and 2 with a length Substrate beam thinnest 0.0005 Piezoelectric permittivity ~ 15.93 nF/
of Ly, i.e., Ly = Lapy - L. Similarly, rearranging Egs.(31) and (32) in the thickness ho m £330 m
matrix form yields: Smoothness coefficient & 20 Piezoelectric constant e3; 712.54 C/
Hyay,y = Kawa, + Koy, Power order m 2 Inductance Ly I1IT242 H
Hayy;+ Heyoj = Kpaypya, (33)
in which,
I 1 1 1 1 0 0]
r Iy 3 T4 0 0
iE Lk 1 iEL;kors iE I;ksrs iELk4ry dEAiy O
Ko = Gk, —11) GAiks — 1) GAiiks —13) GAiiks—r4) 0 0
—dr, —dry —drs —dr, 0 1
I 0 0 0 0 EAy 0]
I 0 0 0 0 0 0]
0 0 0 0 0 0
iE Lk, iE L ikors iELiksrs iE Lk4T4 —dEA;y O
Ko = GAi(iky, —11) GAi(iks —13) GiAiliks —13) GiAiliks—rs) 0 0|
0 0 0 0 0 0
L 0 0 0 0 EAy 0]
r ekili kel ksli eikali 0 0 1
refali rpekeli rzeeli raefeli 0 0
o iE, Ik, efili iE, L k,ryefel iE I ksrsesti iE, Ik rqe®el dEAgycos(yL;) —dE,Asysin(yL;) ’
GeAs(iky —r1)e™ ™ GoA(iky — 12)e™"  GoA(iks — r5)e™"  GoA,(iky — rq)e™ " 0 0
—dre*ki —drye*eli —drsyelsti —drseli sin(yL;) cos(yL;)
L 0 0 0 0 EAgycos(yL;)  —EAgysin(yL;) |
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and Introduce the following Raccati transformation to Egs.(37) and (39)
Sarn = PnSein + qn, (40)
[ 0 0 0 0 0 0 1
0 0 0 0 0 0
iE L kqry el iE L koroeteli iE I ksrsesti iE,Lkryeel —dE,Asycos(yL;)  dEAsysin(yL;)
Ha = GA(iky — )bl GA(iks — 12)eh  GoAy(iks — r3)e®sh  GA,(iky — rq)e®eh 0 0
0 0 0 0 0 0
0 0 0 0 EAgycos(yL;)  —EAsysin(yL;) |

2.2. Band structure analysis

Considering the continuity condition between each unit cell, the
total transfer matrix T between nth and (n + 1)th unit cell can be
obtained:

T =K, (H, +G) (K, + G) " HyK,! (HaT, + HoT.B'A)

o 34)
(Ktl + KB~ A) th

Assuming the meta-beam is infinitely long, the Bloch’s theorem in-
terprets the structural periodicity as:

it = ety (35)

where g is the wave number, and L is the total length of a unit cell, i.e., L
= Lapy + Lp. A standard eigenvalue problem is formulated by comparing
Eq. (34) and (35):

|T—e"1| =0, (36)

where I is a 6 x 6 identity matrix. The dispersion relationships in both
longitudinal and transverse directions of the proposed meta-beam can
be determined by solvind Eq. (36). In the real band structure, band gaps
occur in blank areas with no real solutions.

2.3. Transmittance spectra investigation

As mentioned in Section 1, directly applying conventional TMM
leads to a collapse in transmittance calculations as a result of successive
multiplication. Therefore, to improve the stability, RTMM is applied to is
applied to predict the transmittance of the proposed meta-beam with 6-
unit cells (n = 6). The relationship between modal coordinates in each
unit cell can be rewritten as follows:

So.n = Usl,n +fn-, (37)

U= (H,+G) (K, + G) 'HuK, (Ha T, + HoT.B'A)

R (38)
(Ka + KB 'A) " HuK L.

In the above equation, the subscripts I and O represent the input and
output of a unit cell, and U represents the local transfer matrix in a unit
cell. f; is the column array of the load function exerted on each unit cell.
Then, Eq. (37) can be divided as a matrix form:

Sa Un U12] |:Sa:| |:fa:|
- + 39
|:Sb :| On [ U21 U22 sb In fb n ( )
where Sy is a zero vector, representing the zero boundary conditions,

and Uy; ~Upyp are the submatrices formed by rearranging the local
transfer matrix U.

where
{Pu+1 = (U11Pn + Ur2)(Un1pa + Unz) ™" (41)
qn+1 = Ullqn +fan _pn+l(U21qn +fbn)-
000
pnand g, are recursive equations with the initial valuep; = [0 0 0
0 0 O
0
q1 = | 0 |. The input and output state vectors of each component can
0

thus be obtained through recursive relations and boundary conditions.
By using RTMM, the number of matrix dimensions involved in the
calculation can be reduced by half.

The transmittance is defined as the ratio of the output to the input, i.
e., the magnitude ratio of the response displacement to the excitation
displacement:

7 = 20log,o(|Wa / Wo)). (42)

which is often expressed in the decibel scale. Theoretically, the band gap
can be defined as the region where the transmittance of an undamped
metamaterial is below 0 dB.

3. Results and discussion

In this section, the above theoretical model is validated by a corre-
sponding FE simulation, established using the Structural Mechanics
(Solid) module of the commercial software COMSOL Multiphysics.
RTMM is compared to the conventional TMM, accompanied by a
detailed analysis of the instability inherent in conventional TMM, fol-
lowed by a parametric study on both geometric and electric factors.

3.1. Finite element verification

Table 1 lists the geometric and material parameters of the proposed
meta-beam under investigation. As the previous section introduces, the
tapered beam segment is discretized in the modelling. Thus, it is
essential to investigate the impact of the smoothness of the thickness
variation of the ABH segment first. For ABH beams, the local wave
number k, founded on the thickness h(x), can be represented as [30,41]:

_ (12p7*w® 025
(o) @

The smoothness condition for the variation in beam thickness re-
quires that the spatial variation of the flexural wave number be much
smaller over a distance on the order of the wavelength. Mathematically,
this can be expressed as follows:

dk 1

ax E«k' (44)
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Fig. 4. Ar/k? decreases with the increment of segment number j at first three
eigen frequencies of ABH segments.

The change in wavenumber between two adjacent segments with
thickness of hy and h; can be calculated as:

0.25 0.25
Ak = 12pr2w? 12p720?
~\ ERr ER? ’

Since the thickness of ABH segments is governed by a power profile,
it is reasonable to infer that the largest change in wavenumber occurs at
the boundary where the plain segment transitions to the tapered
segment. Thus, to meet the smoothness condition, a change in boundary
should satisfy Ak /k?<«1. As shown in Fig. 4. the segment number j is
plotted versus Ak/k? at the first three eigen frequencies of the ABH
segment w1, wz, and w3. The result indicates that when the ABH segment
is divided into >1000 sub-segments, the value of Ak /k? is significantly
smaller than 1 at three natural frequencies. Therefore, discretizing the
ABH segment into 1000 sub-segments fulfills the smoothness condition.

Fig. 5(a) shows the band structure of the proposed meta-beam with
the specified parameters listed in Table 1. The dimensionless wave-
number along the x-axis is defined as q* = qL/x. Fig. 6 presents the
transmittance of the proposed meta-beam comprising 6 and 18 unit cells
(n =6, 18). As shown in Fig. 5(a) and Fig. 6, the theoretical results agree
well with the FE simulation.

As shown in Fig. 5(a), the proposed meta-beam produces three band
gaps, filled in light blue, covering the frequency ranges of [1082.5,
1100.3] Hz, [2153.3, 2332.1] Hz, and [6388.9, 10,446.1] Hz,

(45)

@ ‘
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respectively. In Fig. 5(b), the “stepped piezo” case refers to a configu-
ration that includes piezoelectric elements but excludes the ABH struc-
ture, while the “double-leaf ABH” case features a purely ABH structure
without any piezoelectric elements. They are provided as benchmarks to
highlight the advantages of the proposed design that combines both
features. It is important to note that all parameters used in the bench-
mark cases are identical to those in Fig. 5(a), ensuring a consistent basis
for fair and meaningful comparison. The band gaps observed in the band
structures of the stepped piezoelectric meta-beam and the double-leaf
ABH beam are shaded in light green and yellow, respectively. While
the first ([1083.0-1100.2] Hz) and second ([2187.1-2517.1] Hz) band
gaps in the stepped piezoelectric meta-beam closely match those in the
proposed meta-beam, its third band gap ([8972.7-9734.7] Hz) is
notably narrower. Additionally, the two band gaps of the ABH beam
span the frequency ranges of [1972.3, 2328.1] Hz and [6418.6, 9229.7]
Hz. A comparative analysis with Fig. 5(b) reveals the formation mech-
anism for each band gap in the proposed meta-beam. The first band gap
originates primarily from the piezoelectric effect. The second band gap
emerges from the overlap between the second band gap of the stepped
piezo-beam and the first band gap of the double-leaf ABH beam.
Furthermore, the third band gap is significantly broadened due to the
combined effect of the third band gap from the stepped piezoelectric
beam and the second band gap from the double-leaf ABH beam,
resulting in an even wider band gap in the integrated meta-beam.
Overall, the proposed meta-beam combines the advantages of both de-
signs: its total band gap width is increased by respectively 283.5 % and
34.3 % compared to the stepped piezoelectric meta-beam and double-
leaf ABH beam.

It is worth noting that a band gap is theoretically defined as a region
where the transmittance is below 0 dB. However, Fig. 6 shows additional
regions that meet this theoretical requirement but cannot be considered
as band gaps. Thus, the results from band structure analysis, as shaded in
light blue, are essential as a reference for accurately identifying band
gaps. Furthermore, the valley profile of the first band gap exhibits
backward spikes, whereas those of the second and third band gaps
remain smooth. This distinction suggests that the first band gap is
induced by local resonance, while the third primarily arises from Bragg
scattering mechanisms [77]. Fig. 6(a) demonstrates a computational
collapse in the conventional TMM results at high frequencies. Further-
more, as shown in Fig. 6(b), a similar numerical instability occurs even
in low-frequency domains when the number of unit cells increases.

(b)

s Enlarged view of (a) - l
10 FEM || -= X 10 b . x Stepped piezo
TMM Double-leaf ABH |
1.1}
~ 8 8
N
a
2 L ! : x
2 0f 0 02 04 06 08 1 6f ‘
% R Enlarged view of (b)
o 4t ¥ 4t Xy 1
=
2t 1.1 2t \\.\/-;»
O P I ] 0 /EVIVEN 1
0 0.5 1 O 0.2 0.4 0.6 0.8 1 0 0.5 1

Dimensionless Wavenumber ¢ *
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Fig. 5. Band structures of (a) proposed meta-beam with band gaps shaded in blue, (b) stepped piezoelectric meta-beam and double-leaf ABH beam with band gaps
shaded in light green and yellow respectively. Total band gap width of proposed meta-beam is increased by respectively 283.5 % and 34.3 % compared to the stepped

piezoelectric meta-beam and double-leaf ABH beam.
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Fig. 6. Transmittance of proposed meta-beam with band gaps shaded in blue obtained using FEM, RTMM, and conventional TMM: (a) 6 unit cells, (b) 18 unit cells.
Numerical failures can be found in high and low frequency domains respectively with conventional TMM.

Mathematically, the conventional TMM accumulatively multiplies local
transfer matrices to produce a global transfer matrix, which is then
applied with boundary conditions:

W
[Tt —1]| | =0
78
(46)
K1 0 "8 B.C.
0 Hy||y,| |BC

where B.C. represents the boundary conditions. Rewriting the Eq. (46), a
12 x 12 global transfer matrix T* can be obtained, in which elements
with high magnitudes are located intensively.

This ill-conditioned matrix arises from either: (1) the direct multi-
plication of high-frequency components, or (2) the cumulative effect of
successive multiplications of local transfer matrices. For instance, Fig. 7
(a) plots the heat map of T* at 8 kHz for the 6 unit cell meta-beam, where
the failure had already begun. It is evident that the magnitudes of ele-
ments vary so remarkably that T* becomes ill-conditioned. As a refer-
ence, the change in the conditional number of T* is plotted in Fig. 7(b),
in which the magnitude of the condition number keeps soaring up with
the increase of frequency. Therefore, directly solving Eq. (46) using a

(@) Matrix Elements Magnitude (Log Scale)

2

4

z 6
2
=2

8

10

|}
L L]
12
2 4 6 8 10 12
Column

basic algorithm becomes particularly challenging, especially in high-
frequency domains or when dealing with structures containing a large
number of unit cells.

In contrast, RTMM utilizes modal coordinates through a series of
recursive equations rather than state coordinates as in conventional
TMM. This approach significantly reduces the multiplication and,
consequently, magnitudes of the matrix entries. Additionally, RTMM
decomposes the transfer matrix into four sub-matrices, as shown in Eq.
(39), storing zero elements in one of the sub-matrices in the first itera-
tion. As a result, the disparity in magnitudes of the entries within each
sub-matrix is reduced. Consequently, RTMM avoids the emergence of an
ill-conditioned T*, thereby improving the stability of the conventional
TMM. Furthermore, compared to SEM, which is also a stable approach,
RTMM offers superior computational efficiency. SEM constructs the
global dynamic matrix by summating individual element matrices, a
process that inherently increases the matrix dimension [28], particularly
for complex metamaterials consisting of many unit cells. This matrix
dimensional expansion significantly increases both computational time
and memory consumption, posing challenges for large-scale systems. In
contrast, RTMM preserves a constant matrix dimension by employing
successive matrix multiplications, thereby reducing computational
overhead and memory requirements. Additionally, by leveraging a
recursive formulation presented in Eq. (41), RTMM further minimizes

(b)

20 L

Condition number
=
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(=]
=

L

6000
Frequency (Hz)
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10000

1 0() L " s
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Fig. 7. Cause of failure in conventional TMM. (a) Heat map of an ill-conditioned global transfer matrix T* magnitude at 8 kHz. Color bars from blue to yellow
represent magnitudes from small to large. (b) Rapid increase in condition number of T* with increment of frequency.
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Fig. 8. Overview of experimental setup.

the computational resources needed. This efficiency advantage makes
RTMM particularly well-suited for modeling metamaterials with a large
number of unit cells, where the drawbacks of SEM become pronounced.

3.2. Experimental validation

To further validate the theoretical predictions derived from the
RTMM method, a 6-unit-cell meta-beam prototype was fabricated using

3D printing and then experimentally tested. Polylactic Acid (PLA) was
selected as the printing material due to its printability and cost-
effectiveness. To accommodate manufacturing constraints, the phys-
ical prototype dimensions were optimized as follows: Lapy = 0.02 m, L,
=0.0215m, b= 0.02m, L; = 0.01 m, hy = 0.0006 m, h, = 0.0002 m, and
hs = 0.002 m. The PLA substrate has a Young’s modulus E; of 3.15 GPa,
shear modulus G; of 1.17 GPa, and a density p of 1240 kg/m®. For the
piezoelectric material, PZT-5H was used for its superior performance

(a)

Op-amp

Op-amp

Front view

Side view

PLA

Fig. 9. (a) Diagram of Antoniou’s synthetic inductor circuit, and (b) Proposed meta-beam samples fabricated using spring steel and PLA substrate.
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Fig. 10. Transmittance obtained by theoretical simulation and experiment with band gaps shaded in red and blue respectively.
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Fig. 11. Experimental verification: (a) Comparison of measured transmittance around the first band gap, where transmittance drops with active state. (b) Measured
displacement decreases significantly after DC power supplement. (¢) Transmittance of spring steel fabricated meta-beam obtained by theoretical simulation

and experiment.

Fig. 12. Schematic of Bezier thickness profile governed tapered segment with a
local coordinate system and three control points.

and availability, with material properties of Cf; = 60 GPa, Ci; = 23 GPa,

and p, = 7500 kg/m°. The thickness profile follows a power-law dis-
tribution defined by smoothness coefficient ¢ = 16 and m = 2. The
equivalent inductor Lq is set to be 1 H, which is determined by

_ R1R3R4C1

L
d R,

47)

The experimental configuration is illustrated in Fig. 8. Harmonic
vibrations spanning 100-1000 Hz were generated using Econ VCS
software, with a vibration controller (Econ. VT-9002) transmitting user-
defined signals to a shaker (Econ. EDS) via a power amplifier (Econ.

11

VSA-H102A). Displacement responses at the beam’s free end were
measured and recorded using a laser Doppler vibrometer (Soptop. LV-
S01) synchronized to a dedicated controller. Notably, Antoniou’s syn-
thetic inductor circuit [78], as shown in Fig. 9(a), was integrated into
the setup with a DC power supply to mitigate parasitic resistance effects,
thereby preserving the fidelity of the 1-C resonance [79]. Fig. 9(b) shows
the two proposed meta-beams with spring steel and PLA as the substrate
material. Transmittance was calculated using Eq. (42).

Experimental measurements identified two prominent band gaps:
494-528 Hz (attributed to LR effect) and 634-980 Hz (associated with
BS effect), as shown in Fig. 10. These measured ranges exhibit slight
upward shifts compared to theoretical predictions (480-522 Hz and
608-965 Hz). The geometric deviation is one of the key factors
contributing to the above discrepancy. Manufacturing tolerances
inherent in 3D printing and adhesive bonding processes introduce
thickness variations, which alter bending stiffness and, as a result, per-
turb band gap positions.

Fig. 11(a) demonstrates the transmittance contrast between the
active (DC-powered) and passive (short-circuit) configurations. Acti-
vating the synthetic inductor circuit via DC power reduces transmittance
from -0.87 dB to —-7.80 dB, confirming enhanced I-C resonance efficacy
in creating a deep band gap. In addition, Fig. 11(b) shows a fivefold
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displacement reduction (from 5 pm to 1 pm) at 511 Hz (the deepest
valley of the first band gap) after DC power is applied, demonstrating the
profound efficiency in vibration suppression.

The discrepancy in the high-frequency domain is noteworthy, as the
experimental transmittance consistently appears lower than the theo-
retical prediction. Additionally, signal contamination from parasitic
vibrations introduces noise, obscuring the expected smooth trans-
mittance valley. These issues are primarily attributed to the pronounced
damping effect in the high-frequency domain [80]. For instance, around
900 Hz, an unexpected resonant peak appears with a transmittance
value below 0 dB. According to fundamental principles of vibration and
dynamics, resonance typically results in significant structural vibrations,
often yielding transmittance values well above 0 dB. The fact that this
peak remains below 0 dB indicates an exceptionally high damping effect
within the system. To address these limitations, a spring steel
meta-beam sample, depicted in Fig. 9(b), was tested across an extended
range of 1000-2500 Hz. As shown in Fig. 11(c), this configuration
achieves improved coherence between experimental and simulated re-
sults, without the noise induced by the material damping. The enhanced
agreement validates the efficiency of RTMM in predicting the band gap
for the proposed meta-beam.

3.3. Parametric study

Based on the theoretical model established, the influences of the
thickness profile and electric parameters are thoroughly investigated.
The default geometric and material parameters are the same as those in
Table 1.

3.3.1. Influence of thickness profile

As introduced in earlier sections, the thickness of the ABH indenta-
tion is conventionally governed by the power law profile, h;(x) = h; —
2(ex™ + hy). In addition to the power law, other thickness profiles that
taper to approximately zero thickness at the edge of a segment can also
produce a similar ABH effect. While higher-order power law, exponen-
tial, and cosine profiles have been discussed and compared in terms of
energy dissipation and wave reflection [81], this paper investigates the
influences of these profiles and the Bezier thickness profile on the band
gap phenomenon. The formula of the Bezier profile in each tapered
segment can be written as:

,t€[0,1]

{x(t) = (1 —2)xo + 2t(1 — t)x1 + 2, 48)

¥(© = (1-2)yo +2t(1 — t)y1 + >

where Py (xo, y0), P1 (x1, ¥1), and P (x3, y2) are the three control points
of each tapered segment, as shown in Fig. 12.

It is worth noting that the length of the tapered segment L, the
thickness at the junction, and the truncated edge remain constant across
all the profiles, as plotted in Fig. 13(a). To further study the influences of
different thickness profiles, the change in phase velocity at 8 kHz is
shown in Fig. 13(b). Using local wave number k obtained by Eq. (43), the
phase velocity cpy, is defined as:

e = (49)

As depicted in Fig. 13, the phase velocities of the wave in both
profiles decrease as the thickness decreases, indicating that most of the
energy dissipation occurs at the thinnest point, where the wave is
concentrated. From an energy perspective, since the phase velocity of
the Bezier profile, shown in Fig. 13(b), is consistently smaller than that
of the other profiles, it is reasonable to deduce that the energy dissipa-
tion in the Bezier profile is greater than in other profiles before reaching
the thinnest point. Consequently, the Bezier profile may produce a wider
band gap in the band structure.

To validate the aforementioned deduction, the band structures for
different thickness profiles are plotted in Fig. 14. It is evident that the
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Fig. 16. Influence of inductance on band gap formation, with critical induc-
tance of 0.28 H for band gap coupling.
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Fig. 17. Transmittance of meta-beam with LR and BS band gaps shaded in pink
and blue, respectively. (a) Lg = 0.2 H, (b) Ls = 0.28 H, (¢c) L; = 0.4 H LR and BS
band gaps merge as a wider band gap at inductance of 0.28 H.

second and third band gaps are sensitive to changes in thickness profiles.
The widths of the band gaps are correlated with the phase velocities.
Specifically, profiles with higher phase velocities lead to narrower band
gaps, as shown in Fig. 14(a) and (b), while those with lower phase ve-
locities result in broader band gaps, as depicted in Fig. 14(c) and (d).
Notably, the Bezier profile, which exhibits the lowest phase velocity in
Fig. 13(b), produces the broadest second and third band gaps, as illus-
trated in Fig. 14(d).

Furthermore, Fig. 15 unveils the impact of control points on the
formation of the second and third band gaps. Since the first band gap is
insensitive to the changes in thickness profiles, it is not discussed here.
Control points Py and P are fixed to maintain the initial and terminal
thickness, as well as the length of the indentation. As the free point P,
shifts horizontally and vertically, as depicted in Fig. 15(a) and (b), both
the second and third band gaps attain their broadest when P; is posi-
tioned at the terminals. This movement towards the terminals lowers the
thickness profile, as shown in Fig. 13(a), with a corresponding decrease
in phase velocity in Fig. 13(b). The influences of the free control point on
band gaps further support the earlier conclusion that a lower phase
velocity leads to a wider band gap.

3.3.2. Influence of electric parameters
As depicted in Fig. 6, the valley profile of the first band gap features a
sharp spike, while those of the second and third band gaps are smooth.
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From this, we can deduce that the first band gap is primarily due to local
resonance, and the second and third band gaps are attributed to Bragg
scattering [77]. To explore the possibility of merging the LR and BS band
gaps into a wide, combined band gap, the influence of the inductance on
the band gap formation is prioritized. As illustrated in Fig. 16, the LR
and BS band gaps, shaded in pink and blue, approach and separate from
each other as the inductance varies. Notably, at an inductance of 0.28 H,
the two band gaps converge to form a combined band gap.

In addition, Fig. 17 compares the transmittance of a 6-unit meta-
beam with the critical inductance of 0.28 H and two adjacent in-
ductances, 0.2 and 0.4 H The suppression regions induced by LR and BS
effects, are shaded in pink and blue, respectively. As depicted in Fig. 17
(b), while there is a peak, the two band gaps remain distinguishable by
referencing Fig. 16, overlapping to form a wider, combined suppression
region. The suppression region ranges are [1934.3, 2318.9] Hz and
[2706.5, 2799.0] Hz in Fig. 17(a), and [1800.0, 1949.6] Hz and
[2105.2, 2358.1] Hz in Fig. 17(c). Compared to the total bandwidth of
the discrete suppression regions of meta-beam with inductances of 0.2 H
and 0.4 H, the overlapped suppression region, ranging from 1906.6 Hz
to 2443.0 Hz, is increased by 12.4 % and 33.2 %, respectively.

4. Conclusions

This study has demonstrated that integrating double-leaf ABH con-
figurations with adaptive piezoelectric shunting circuits enables ultra-
broadband vibration suppression through synergistic physical mecha-
nisms. The proposed meta-beam effectively combines piezoelectric and
ABH effects, resulting in the formation of three wide band gaps. To
address the computational limitations of conventional TMM in high-
frequency domains, a theoretical model was developed using the
RTMM. The accuracy of the model was validated against an FE model.
Furthermore, an experimental study was conducted to further validate
the proposed meta-beam, using an equivalent circuit to emulate induc-
tive components.

Compared to conventional piezoelectric and ABH meta-beams, the
proposed meta-beam achieves a 283.5 % and 34.2 % wider total band
gap range respectively. In addition, the effects of ABH indentation
thickness profiles on band gap formation were investigated, along with a
discussion from the energy perspective. Among various profiles, the
Bezier profile was notable for inducing the widest band gap. Further-
more, the tunability of the meta-beam was explored through a para-
metric study on inductance, where a wider unified suppression region
was realized by merging the LR and BS band gaps through inductance
tuning.

Overall, this study presents a new paradigm for metamaterial design
by seamlessly integrating multi-physics coupling strategies, surpassing
the limitations of single mechanism approaches. The demonstrated vi-
bration control capabilities make this meta-beam design a highly
promising solution for broadband and tunable vibration suppression.
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