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A B S T R A C T

Although chiral mechanical metamaterials have garnered significant interest due to their wave 
manipulation capabilities, research into designs featuring adjustable dynamic characteristics re
mains relatively limited. This study presents an innovative design strategy that integrates 
adjustable rudder oscillators into periodic chiral lattices. A syndiotactic configuration is further 
proposed to produce multiple band gaps for broadband vibration suppression. Additionally, a 
programmable mechanism is introduced to actively regulate the band gap formation without 
compromising the structural integrity, particularly the static load-bearing capacity. To facilitate 
the analysis and optimization, a theoretical model that incorporates rigid-flexible and 
compressive-torsional coupling effects is developed to predict the transmittance spectra of such 
chiral metamaterials. For validation, both experiment tests and finite element simulations are 
conducted. The results obtained from all the means indicate that the syndiotactic configuration 
can produce vibration suppression zones over the ranges of 130.3–246.7 Hz, 293.4–369.0 Hz, and 
597.7–995.6 Hz, while the isotactic one can only suppress vibrations in the ranges of 
292.3–369.4 Hz and 699.1–783.0 Hz. The overall bandwidth of the vibration suppression zones 
generated by the syndiotactic configuration increases by 266.3 %. Meanwhile, a comprehensive 
analysis is also performed to uncover the underlying mechanisms behind the band gap formation. 
Furthermore, we demonstrate the tunability of the proposed chiral metamaterials in terms of 
vibration suppression capability. This work not only provides new insights into the exceptional 
dynamic behaviors of syndiotactic chiral metamaterials but also establishes solid methodological 
foundations for their analysis.

1. Introduction

Mechanical metamaterials [1–3], as an emerging class of engineered structures, exhibit extraordinary properties not found in 
natural substances [4,5]. Such properties include negative Poisson’s ratio [6], ultrahigh strength-to-density ratio [7], zero thermal 
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expansion coefficient [8], and multi-stable states [3]. Particularly, the evolution of mechanical metamaterials has also provided new 
avenues for manipulating elastic waves [9,10]. The formation of frequency-independent band gaps effectively prohibits vibration 
propagation, leading to rapid attenuation throughout their transmission [11]. Compared with Bragg band gaps [12], locally resonant 
band gaps [13] are more suitable for low-frequency vibration attenuation [14]. Moreover, inertial amplification [15,16] contributes to 
the creation of broadband gaps in metamaterials at low subwavelength frequencies. In addition, quasi-zero stiffness [17–20] enables 
nonlinear passive vibration isolation at ultralow frequencies.

Over the past few decades, numerous mechanical metamaterials [21,22] have been meticulously designed to achieve specific 
vibration suppression performance. Yet, a common drawback of these structures is that once fabricated, their mechanical properties 
cannot be easily modified without complete reconstruction [23]. This lack of flexibility diminishes their adaptivity to various working 
conditions that necessitate adjustable dynamic behaviors [24]. In the literature, there are two main strategies for tailoring the band gap 
properties of mechanical metamaterial. One way is to modulate the intrinsic properties with stimuli-responsive materials [25], and the 
other is to change the geometric configurations [26]. When stimulated by heat, stress, or electromagnetic fields, smart materials such 
as shape memory polymers [27] and piezoelectric patches [28] will trigger the reconfiguration of these mechanical metamaterials. A 
typical example is the active mechanical metamaterial proposed by Montgomery et al. [29], which actively manipulates the band gaps 
by applying an external magnetic field. More recently, Dudek et al. [30] presented a magneto-mechanical metamaterial that allows for 
dramatic shape change, thereby empowering the tunability of phononic band gaps. In addition, mechanical loading-induced geometric 
deformations provide a robust means to modify both the position and width of band gaps. Following this concept, Wang et al. [31]
investigated the effects of applied deformation on the low-frequency directionality of propagating waves. However, these active 
metamaterials not only require continuous loading [32] but also suffer the dilemma between broadband tunability and structural 
stability [33]. The second approach relies on changing the mass, size, or geometry of mechanical metamaterials [34]. For instance, Gu 
et al. [23] modulated the Dirac frequency of a honeycomb-lattice elastic metamaterial by adjusting the water depth of the cavities. 
Through theoretical modeling of the nonlinear dispersion relation for metamaterial beams, Shen and Lacarbonara [35] highlighted 
that a properly tuned softening resonator can significantly enlarge the stop band. Khosravi et al. [36] found that stretching kirigami 
sheets enables tuning band gaps for elastic waves at low frequencies. Through parametrical design, Wu et al. [37] changed the 
structural nonlinearity of X-shaped local resonators to adjust the bandgap width and location. Although these metamaterials achieve 
bandgap tuning over a broad frequency range, the reduction in the starting frequency and attenuation coefficient of the bandgap is 
inherently restricted by the structrual stiffness-to-mass ratio [38]. Hence, further exploration of novel techniques to decrease the 
bandgap frequency, while mataining the original mass and stiffness, is still actively pursued.

In such background, chirality-inspired periodic lattices have garnered significant attention for their fascinating tunable dynamic 
properties [39–41], such as elastic wave polarization [42] and the expansion of local resonance-induced bandgaps [43]. Making use of 
chiral internally resonating elements, the frequency-selective properties were integrated into lattice structures for low-frequency vi
bration control [44]. Zhu et al. [45] designed a chiral metamaterial beam with multiple resonators of individual bandgaps to enhance 
vibration suppression performance. By overlapping the flexural bandgap with the longitudinal-torsional bandgap, Park et al. [46]
opened a complete bandgap in chiral trabeated metabeams. Zhang et al. [47] incorporated chiral local resonators into metamaterials to 
create a low-frequency bandgap with tunability. In essence, the widening of the local resonance-induced bandgap mainly benefits from 
the outstanding specific stiffness of chiral lattices. Yilmaz et al. [48] demonstrated that the translational-rotational coupling feature of 
chiral mechanical metamaterials endows the low-frequency band gaps with the inertial amplification effect. Bergamini et al. [38] and 
Zhao et al. [49] indicated that the dynamic properties of chiral lattice metamaterials are associated with tacticity. By changing the 
cascade form of chiral unit cells, the band gaps can be tuned without changing the relative density. In our previous studies [50,51], the 
analogy Thomson scattering was observed in planar chiral metamaterials. The results indicate that the initial frequency of attenuation 
can be comparable to the locally resonant band gap, whereas the bandwidth is remarkably broader. Although the wave propagation 
behaviors of purely chiral metamaterials have been well investigated, the formation mechanism of multiple bandgaps remains to be 
further explored for 3D chiral metamaterials with local resonators.

It is noteworthy that the accurate prediction of their transmittance spectra is a key prerequisite for the fine-tailoring of chiral 
mechanical metamaterials [52,53]. After all, mechanical testing is costly and time-consuming. At present, prevailing dynamic 
modeling approaches include the transfer matrix method (TMM) [54], the lumped mass-spring method (LMSM) [55], the plane wave 
expansion method (PWEM) [56], the finite element method (FEM) [57], and the spectral element method (SEM) [58]. Among these 
methods, the TMM struggles to model complex structures, limiting its application to one-dimensional systems [59]. Ding et al. [60,61]
utilized LMSM to analyze the frequency response of chiral metamaterials, but the developed model demands a size-dependent 
correction factor to adjust the effective radius for accurate predictions. This correction may arise from the inherent discrepancy 
that the simplified discrete model cannot fully characterize the continuum structure in practical applications [62]. Regarding the 
PWEM, the material properties of the periodic medium are required to be expressed into a closed-form formula, thus reducing its 
versatility [63]. As adopted in [47,49,64,65], the calculation of the transmittance spectra of 3D chiral metamaterials still heavily relies 
on commercial FE software, but the simulation process is computationally demanding. In contrast to the FEM which necessitates fine 
meshes for precise solutions, the SEM enhances computational efficiency by using a single spectral element to model entire uniform 
segments [58,66,67]. However, due to the intricate nature of chiral metamaterials, including chiral branches and rigid bodies, no SEM 
has been presented to formulate the dynamic governing equations. Consequently, developing an efficient theoretical framework to 
predict the band gap properties of adjustable chiral metamaterials remains a significant challenge.

Motivated by the above research gaps, this study proposes and analyzes a novel type of chiral mechanical metamaterials with 
tunable band gaps. The main innovations of this work are threefold. (1) The developed chiral metamaterials with local resonators not 
only generate multiple band gaps below 1000 Hz but also offer high tunability and versatile configurations, allowing for the 
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customization of dynamic properties without sacrificing mass density and quasi-static stiffness. (2) An extended SEM model is 
developed that incorporates both rigid-flexible and compressive-torsional coupling effects within chiral mechanical metamaterials. 
This theoretical model enables direct prediction of vibration responses, facilitating efficient customization of band gaps without 
resorting to FE software or algorithm corrections. (3) Through the movement decomposition and edge eigenmodes, the wideband 
mechanism of syndiotactic configurations is revealed in compassion to isotactic configurations, providing new insights into the physics 
of elastic wave propagation in chiral metamaterials.

The rest of the paper is arranged as follows. Section 2 elucidates the structural design of the isotactic and syndiotactic chiral 
metamaterials with rudder oscillators. In Section 3, we develop a theoretical framework to reveal the band gap characteristics of such 
chiral metamaterials. Section 4 verifies the effectiveness of the theoretical model through both experimental and simulation results. 
Section 5 explores the wideband mechanism and tunable performance of such chiral metamaterials. Finally, the concluding remarks 
are provided in Section 6.

2. Structural design

Starting from the geometrical configurations, this section will introduce the design concept of a new type of mechanical meta
material. Inspired by the concept of polymer chemistry [68], the isotactic and syndiotactic chiral mechanical metamaterials will be 
proposed in this section.

As illustrated in Fig. 1, the three-dimensional mechanical metamaterials are composed of chiral structures and rudder oscillators. 
The incorporation of chiral structures facilitates a coupling effect between torsional and compressive deformations, a behavior 
typically forbidden in conventional metamaterials due to symmetry constraints [39,41]. In addition, the inertial amplification effect 
inherent in the chiral structures contributes to the formation of broadband gaps at low frequencies [60,61]. Furthermore, the rudder 
oscillators are integrated to enhance the local resonator effects for this type of metamaterial, facilitating the creation of band gaps in 
the lower-frequency domain.

The topological configurations and geometric parameters of the chiral elementary cells are depicted in Fig. 1(a) and (b). Each chiral 
structure comprises two substrate plates with diameter dp and height hp. The adjacent substrate plates with a distance of hc are con
nected vertically by three inclined beams. From the top view, these inclined beams are uniformly distributed along the perimeter of an 
enneagon, the circumscribed circle of which has a radius of r1. The diameter and length of these inclined beams are defined by dc and lc, 
respectively. Moreover, as illustrated in Fig. 1(a), θ refers to the tilt angle between the inclined beams and the lower substrate plate. For 
the rudder oscillators, eight cantilever beams with a diameter of ds extend from the upper substrate plate, and the attached mass blocks 
are of dimensions lm × wm × hm. By introducing the screw-and-nut mechanism, the distance from each mass block to the center of the 
substrate plate is adjustable, denoted as r2.

Within a chiral elementary cell, the inclined beams are grouped according to a specific rotational direction. Notably, the orien
tations of left- and right-handed chiral cells are not identical. The assembly strategy of these chiral elementary cells is inspired by the 
concept of “tacticity,” a term originating from polymer chemistry. Tacticity refers to the specific arrangement of monomer units along 
the polymer chain and is primarily classified into two types: isotactic and syndiotactic. In isotactic polymers, the monomers are 

Fig. 1. Structural design of the chiral mechanical metamaterials. (a) Left chiral elementary cell; (b) Right chiral elementary cell; (c) Isotactic 
metamaterial with left chiral elementary cells periodically arranged; and (d) syndiotactic metamaterial with left and right chiral elementary cells 
alternately arranged.
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arranged uniformly, whereas in syndiotactic polymers, they alternate in a regular pattern. Existing literature has shown that tacticity 
significantly affects the physical properties of polymers [69]. For example, while both isotactic and syndiotactic polypropylene are 
semicrystalline, they show significant differences in melting points, solubility, and mechanical strength [70]. It is worth noting that the 
elementary cells of metamaterial are analogous to the monomer units of the polymer. Moreover, the proposed two elementary cells 
exhibit similar structures, differing only in their chirality, which can be either left- or right-handed. Motivated by the intriguing 
characteristics of tacticity, we further design the isotactic and syndiotactic chiral metamaterials.

Specifically, when all rotational directions within a group are consistent, as illustrated in Fig. 1(c), the configuration is referred to as 
an “isotactic chiral metamaterial”. When subjected to an external load along the x-axis, the deformation of the inclined beams triggers 
relative torsion between the upper and lower substrate plates. Given that all elementary cells in the isotactic arrangement share the 
same rotational direction, the resulting torsion accumulates perpendicularly to the substrate plates, inducing a tension–torsion 
coupling effect at the macroscopic scale. In contrast, the “syndiotactic chiral metamaterial” in Fig. 1(d) features an alternating 
arrangement of left- and right-handed chiral cells, effectively counteracting torsion due to the opposing rotational directions of 
neighboring cells.

3. Theoretical formulation

To elucidate the band gap properties of isotactic and syndiotactic chiral mechanical metamaterials, this section is dedicated to 
deriving the frequency response functions. Unlike the previous FE models that depend on commercial software, an extended spectral 
element method is developed to simultaneously account for both the rigid-flexible coupling effect and the compressive-torsional 
coupling effect within such chiral metamaterials.

3.1. Extended dynamic stiffness matrix for flexible beams

For describing the dynamic responses of the inclined beams and cantilever beams, a two-node spectral element with twelve degrees 
of freedom is constructed as depicted in Fig. 2. Considering the tensile, bending, and torsion deformations, the dynamic stiffness matrix 
Sb maps the nodal displacements djk to the corresponding nodal forces Fjk in the global coordinate system [58]: 

Sbdjk = Fjk (1) 

Without loss of generality, as depicted in Fig. 2 (b), the vectors of nodal displacements djk and nodal forces Fjk for the n-th beam 
element are denoted by 

⎧
⎪⎨

⎪⎩

djk =
[
dT

n,j,d
T
n,k

]
,dn,j =

[
uj, vj,wj, αj, βj, γj

]T
,dn,k = [uk, vk,wk,αk, βk, γk]

T

Fjk =
[
FT

n,j, F
T
n,k

]
, Fn,j =

[
Fxj, Fyj, Fzj,Mxj,Myj,Mzj

]T
,Fn,k =

[
Fxk, Fyk, Fzk,Mxk,Myk,Mzk

]T
(2) 

Regarding the frequency-dependent global dynamic stiffness matrix Sb, its detailed expression can be found in our previous study 
[8,58].

For the proposed chiral metamaterials, the deformation of the substrate plates and mass blocks is significantly smaller than that of 

Fig. 2. Shifting the end nodes of a spatial flexible beam to the connected rigid bodies. Subplots (a) and (b) present a two-node spectral beam 
element in the local and global coordinate systems, respectively. Each node has six degrees of freedom, and the corresponding nodal forces include 
both translational and rotational components. Subplot (c) illustrates the shifting of the two nodes to the positions within the connected rigid bodies. 
The displacement vectors from j to j′ and from k to k′ are (Δx1, Δy1, Δz1) and (Δx2, Δy2, Δz2), respectively.
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the beams, making it reasonable to treat the plates and blocks as rigid bodies within the focused frequency domain. Under this 
assumption, each end of the flexible beam is linked to a rigid substrate plate. Therefore, as illustrated in Fig. 2 (c), how to extend the 
spectral element method to formulate a flexible beam with its end nodes relocated to the positions of the connected rigid bodies 
becomes the central focus of theoretical modeling.

According to the transformational equations provided in Appendix A, the geometric and force relationship at nodes j and j′ satisfies: 

Xj’k =

⎡

⎢
⎢
⎣

I3×3 03×3 03×3 03×3
ϖ1 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

⎤

⎥
⎥
⎦Xjk = TT

1Xjk, Fj’k =

⎡

⎢
⎢
⎣

I3×3 03×3 03×3 03×3
ϖ1 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

⎤

⎥
⎥
⎦Fjk = TT

1Fjk (3) 

where I3×3 and 03×3 are the 3 × 3 identity and zero matrices, respectively; and the coefficient matrix ϖ1 within T1 is determined by 

ϖ1 =

⎡

⎣
0 Δz1 − Δy1

− Δz1 0 Δx1
Δy1 − Δx1 0

⎤

⎦ (4) 

Here, the vector (Δx1, Δy1, Δz1) defined in the global coordinate system is the relative displacement from the end node j to the node j′.
By combining with Eqs. (2) and (3), the original dynamic stiffness matrix can be extended to characterize a spatial flexible beam 

with its end node j shifted into the position j′, which is formulated as 

Fj́ k = (TT
1SbT1)Xj́ k (5) 

Similarly, the end node k can also be moved to node k′ located at the rigid body 2, thus removing the node k from the dynamic 
stiffness matrix of the flexible beam. Analogous to Eq.(3), the propagation of displacement and force between nodes k and k′ is 
expressed as: 

Xj’k’ =

⎡

⎢
⎢
⎣

I3×3 03×3 03×3 03×3
03×3 I3×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 ϖ2 I3×3

⎤

⎥
⎥
⎦Xj’k = TT

2Xj’k, Fj’k’ =

⎡

⎢
⎢
⎣

I3×3 03×3 03×3 03×3
03×3 I3×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 ϖ2 I3×3

⎤

⎥
⎥
⎦Fj’k = TT

2Fj’k, (6) 

where the transfer matrix ϖ2 within T2 is given by 

ϖ2 =

⎡

⎣
0 Δz2 − Δy2

− Δz2 0 Δx2
Δy2 − Δx2 0

⎤

⎦ (7) 

The vector (Δx2, Δy2, Δz2) is the relative displacement from the end node k to the node k′.
As a result, the frequency-dependent dynamic response function between the nodal forces and displacements at nodes j′ and k′ can 

be established by integrating Eqs. (3) and (6) as follows: 

Fj́ kʹ =
[
(T1T2)

TSb(T1T2)
]
Xj́ kʹ =

[
TTSbT

]
Xj́ kʹ = DnXj́ kʹ (8) 

where Dn is the global matrix for the inclined beam with its two end nodes shifted into the connected rigid bodies.
To facilitate the subsequent assembly of the global matrice of the entire chiral metamaterial, the dynamic relationship of the n-th 

element can be restructured into a one-to-one mapping form: 
[

Fn,j́
Fn,kʹ

]

= Dn

[
Xn,j́
Xn,kʹ

]

=

[
Dn,1 Dn,2
Dn,3 Dn,4

][
Xn,j́
Xn,kʹ

]

(9) 

Specifically, the displacement vectors at nodes j′ and k′ are denoted by Xn, j’ and Xn, k’ , respectively, while the force vectors at these 
nodes are represented by Fn, j’ and Fn, k’ , respectively. The sub-matrices Dn,1, Dn,2, Dn,3, and Dn,4 are the components of the extended 
dynamic stiffness matrix Dn. All of these vectors and matrices are defined in the global coordinate system.

It is noteworthy that, although our previous work [58] addressed the spectral stiffness of flexible rectangular plates, applying this 
technique to model circular flexible plates within chiral metamaterials presents substantial challenges. First, the spectral element 
method generally adopts line nodes for characterizing plate elements. To achieve compatibility between the spectral stiffness matrices 
of the substrate plate and the chiral lattice structure, a transformation from arc-line nodes (instead of straight-line nodes) to point 
nodes is required. Second, unlike hourglass meta-structures which permit the discretization of substrate plates with rectangular plate 
elements, chiral metamaterials demand the use of both circular and annular plate elements. Additionally, these plate elements do not 
adhere to standard boundary conditions (such as clamped, Levy-type supported, or free edges), which inevitably increases the 
computational complexity.

In light of the structural properties of chiral metamaterials, the theoretical formulation presented here advances the extended 
dynamic stiffness matrix of flexible spectral elements that connect two rigid bodies. By appropriately introducing the rigid-flexible 
coupling assumption, this formulation effectively mitigates the complexity of modeling circular plates via the spectral element 

D. Yu et al.                                                                                                                                                                                                              Mechanical Systems and Signal Processing 230 (2025) 112602 

5 



method. As demonstrated in Section 4, the developed approach offers a highly efficient and accurate way to predict the vibrational 
response of such chiral metamaterials.

3.2. Dynamic frequency response of the entire structure

As depicted in Fig. 3, an elementary cell consists of 10 nodes. By incorporating the extended dynamic stiffness matrix into the force 
equilibrium equations (see Appendix B), the following expression is obtained: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Node 1 : Fint(ω) = (D1, 1 + Mp)x1 + D1, 2x2

Node 2 : Fout(ω) = D1, 3x1 + (D1, 4 + Mp +
∑9

a=2
Da, 1)x2 +

∑9

a=2
Da, 2xa+1

Node 3 : 06×1 = D2, 3x2 + (D2, 4+Mb)x3

Node 4 : 06×1 = D3, 3x2 + (D3, 4+Mb)x4

, ⋯
Node 9 : 06×1 = D8, 3x2 + (D8, 4+Mb)x9

Node 10 : 06×1 = D9, 3x2 + (D9, 4+Mb)x10

(10) 

where Fint(ω) and Fout(ω) are the forces applying on the input and output ports, respectively; xn is the nodal displacement vector of the 
n-th node. Specifically, the inertial matrices Mp and Mb are defined in Appendix B.

On this basis, the 3D dynamic stiffness model of the spatial chiral structure can be obtained by rewriting Eq.(10): 
[
FT

int(ω), FT
out(ω),01×6,⋯,01×6,01×6,01×6

]T
= Ds

[
xT

1 ,x
T
2 ,x

T
3 ,⋯,xT

7 ,x
T
8 ,x

T
9
]T (11) 

For conciseness, the expression for the dynamic stiffness matrix Ds of the elementary cell is provided in Appendix C.
After obtaining the condensed dynamic stiffness matrix of each unit cell, we can further predict the vibration response of the chiral 

structure, which can be simplified into a serial structure linked by rigid bodies. Subsequently, the boundary conditions are integrated 
into Eq.(11) to solve the response of the system. By using the extended dynamic stiffness matrix, the governing equation takes the form: 

[
Fint(ω)
09×6,1

]

=

[
De Def

DT
ef Df

][
x1
xf

]

(12) 

where the subscripts ‘e’ and ‘f’ are short for “essential’’ and “free’’ boundary conditions, respectively. Therefore, the unknown var
iables can be solved as 

⎧
⎨

⎩

xf = − D− 1
f DT

efx1

Fint = (De − DefD− 1
f DT

ef)x1
(13) 

Based on the above formulation, the vibration transmittance of the chiral mechanical metamaterial is evaluated by 

ψ(ω) = 20log (xo/xi) (14) 

Fig. 3. Discretization and numbering of elementary cells. The numbers within the bracket stand for the index of mechanical parts or components, 
while the pure numbers without brackets represent the index of nodes. Nodes 1 and 2 are located at the geometric centers of the lower surface and 
upper surface of the substrate plates, respectively. The other nodes are fixed at the centers of mass blocks. After shifting the end nodes of inclined 
beams to substrate plates, the dynamic stiffness matrix of the chiral structure is condensed into a 12 × 12 matrix. Hence, the chiral structure is 
condensed into one component with two nodes.
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where the vibration amplitudes xi and xo at the input and output ports can be extracted from the solution of Eq. (13). By definition, 
vibration attenuation occurs when ψ(ω) < 0, which is also a necessary condition for the formation of a band gap.

3.3. Dispersion relation formulation for chiral metamaterials

As a well-established method, dispersion relation defines the relationship between wave frequency and wave number and is 
instrumental in identifying band gaps. Hence, this subsection focuses on deriving their dispersion relations to provide deeper insights 
into the band gap properties of isotactic and syndiotactic chiral metamaterials.

Drawing from previous studies on dispersion relation formulation [3,28,35], the first step is to construct the transfer matrix that 
relates the nodal displacements and forces at the input and output ports. In this regard, the dynamic relationship of an elementary cell, 
as presented in Eq. (11), is recast into 

⎡

⎣
Fint
Fout
09×6

⎤

⎦ =

⎡

⎣
DLL DML DRL
DLM DMM DRM
DLR DMR DRR

⎤

⎦

⎡

⎣
x1
x2
xm

⎤

⎦ (15) 

where xm denotes the displacement vector of the nodes, excluding the first two. Through elimination and substitution operations, we 
can obtain 

[
x1
Fint

]

=

[
− C− 1D C− 1

B − AC− 1D AC− 1

][
x2
Fout

]

= Td

[
x2
Fout

]

(16) 

The corresponding block matrices are defined as: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = DLL − DRLD− 1
RRDLR

B = DML − DRLD− 1
RRDMR

C = DLM − DRMD− 1
RRDLR

D = DMM − DRMD− 1
RRDMR

(17) 

Subsequently, the Bloch-Floquet periodic boundary condition is applied to derive the dispersion relation for the isotactic chiral 
metamaterial, which requires 

[
x2
Fout

]

= eiq(hs+2hp)

[
I6×6 06×6
06×6 I6×6

][
x1
Fint

]

⇔
[
x1
Fint

]

= e− iq(hs+2hp)I12×12

[
x2
Fout

]

(18) 

where i =
̅̅̅̅̅
-1

√
is the imaginary unit and q is the wavenumber. Comparing Eq. (16) and Eq. (18) yields a standard eigenvalue problem: 

⃒
⃒Td − e− iq(hs+2hp)I12×12

⃒
⃒ = 0 (19) 

Similar procedures can be applied to derive the dispersion relation of syndiotactic chiral metamaterials. It is worth noting that 
although the representative unit cell of the syndiotactic chiral metamaterial consists of two elementary cells, the internal nodes and 
forces can be condensed, allowing the final equation to be expressed in the same form as Eq. (16).

Solving Eq. (19) for a given ω yields the corresponding solution to wavenumber q. By sweeping ω and plotting the solved q, the band 
structures can be determined, leading to the identification of the band gap characteristics.

4. Experimental validation and simulation verification

In this section, the corresponding FE simulations and experimental measurements are provided to verify the theoretical formulation 
established in Section 3. The frequency responses and band structure of both isotactic and syndiotactic chiral metamaterials will be 
examined.

Table 1 
Geometric parameters of the chiral metamaterials (unit: mm).

Structural parameter Symbol Value Structural parameter Symbol Value

Height of substrate plates hp 5 Length of mass blocks lm 10
Diameter of substrate plates dp 60 Width of mass blocks wm 8
Height of inclined beams hc 35 Height of mass blocks hm 20
Length of inclined beams lc 37.58 Diameter of cantilever beams ds 5
Diameter of inclined beams dc 5 Length of cantilever beams ls 35
Circumscribed circle radius r1 20 Distribution radius of mass blocks r2 55
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4.1. Examination of transmittance properties

Without loss of generality, the verification case study considers isotactic and syndiotactic chiral metamaterials consisting of 8 
elementary cells along the x-direction. The structural parameters for both metamaterials are provided in Table 1, and the material 
properties of the resin used for all components are listed in Table 2.

In this case study, the transmittance spectra of the proposed metamaterials under harmonic excitation along the x-direction are 
computed using both SEM and FEM. The FE model is constructed with COMSOL Multiphysics® software. To experimentally validate 
the vibration suppression performance, prototypes of isotactic and syndiotactic chiral metamaterials are fabricated by 3D printing 
technology. The experimental setup, depicted in Fig. 4, involves suspending the prototype to simulate a free boundary condition. 
Excitation is generated at one end of the specimen using a shaker (The Modal Shop’s Model 2060E), and the vibration transmission rate 
is measured with accelerometers (PCB 352C33) and a data acquisition system (ECON MI-7008).

Fig. 5 compares transmittance responses obtained from the developed theoretical model, the FE simulation, and the experimental 
measurement. It can be seen that the predicted transmittance aligns closely with those from both conventional FE simulations and 
experimental data. For the isotactic chiral metamaterial, two vibration suppression zones are identified in the frequency ranges of 
292.3–369.4 Hz and 699.1–783.0 Hz, with normalized widths of ΔGi,1 = 0.233, and ΔGi,2 = 0.113, respectively. For the syndiotactic 
chiral metamaterial, three vibration suppression zones exist over the frequency ranges of 130.3–246.7 Hz, 293.4–369.0 Hz, and 
597.7–995.6 Hz. The normalized widths are ΔGs,1 = 0.618, ΔGs,2 = 0.228, and ΔGs,3 = 0.499, respectively.

On the one hand, the cumulative width of these band gaps for the syndiotactic chiral metamaterial covers 58.99 % of the frequency 
range below 1000 Hz, demonstrating superior broadband vibration suppression compared to [71]. On the other hand, these band gaps 
do not fall within the low-frequency domain typically sought for engineering applications. It is well-known that band gap formation 
strongly relies on the local resonators. Specifically, the band gap frequency could potentially be lowered by sacrificing the stiffness of 
the chiral metamaterial. However, such an investigation is beyond the scope of this study. Regarding low or ultra-low frequency vi
bration isolation, the metamaterials incorporating quasi-zero-stiffness isolators have shown promising application prospects. For more 
information, readers are encouraged to refer to [17–20], where the initial isolation frequency below 10 Hz is successfully achieved.

Throughout these vibration suppression regions, the relative errors between the theoretical predictions and FE simulations are 
below 3.62 % for the isotactic and 2.08 % for the syndiotactic metamaterials. In terms of computational performance, the theoretical 
model, implemented in Matlab on a desktop with a 3.40 GHz processor and 32 GB RAM, completes the frequency response analysis in 
an average of 5.67 s. In contrast, the FE simulation requires a significantly longer time, approximately 3.19 × 104 s. These results 
validate both the accuracy and computational efficiency of the proposed theoretical model for band gap analysis of chiral 
metamaterials.

A slight difference within the high-frequency region appears in the transmission spectrum of the isotactic configuration. This can be 
attributed to the distortion of the upper substrate plates under high-frequency vibrations, as illustrated in Fig. 6. Unlike the syndio
tactic chiral metamaterial whose substrate plates retain their initial flat state, the upper substrate plates of the isotactic chiral met
amaterial are distorted under high-frequency vibrations. Therefore, the rigid assumption is not strictly satisfied for the high-frequency 
vibration of isotactic chiral metamaterial. Nevertheless, the proposed theoretical model remains effective in identifying vibration 
suppression zones for such chiral metamaterials. In the field of mechanical metamaterials, the first few band gaps are generally of 
particular interest. Moreover, as demonstrated by both simulation and experimental results, the developed theoretical model offers 
reliable and efficient predictions of these band gaps.

4.2. Investigation of band gap behaviors

In this subsection, the band structures are examined to better understand the wave types in chiral metamaterials. Under the 
excitation condition applied in this study, only symmetric longitudinal (SL) modes can be activated, represented by red-colored 
branches in Fig. 7. In addition to COMSOL simulation results, theoretical solutions to the dispersion relation are also provided, 
marked by blue-point branches. The good agreement between the theoretical and simulation results verifies the derived formulation in 
predicting dispersion relations of isotactic and syndiotactic chiral metamaterials.

Regarding the wave propagation of SL modes in the proposed isotactic chiral metamaterial, a complete band gap, as highlighted in 
the aqua area of Fig. 7(a), is opened within the frequency of 292.3–369.4 Hz. For the syndiotactic chiral metamaterial, as presented in 
Fig. 7(b), two narrower band gaps appear at lower frequencies, while a wider band gap is observed at higher frequencies. The 
respective frequency ranges for these band gaps are 130.3–246.7 Hz, 293.4–369.0 Hz, and 597.7–995.6 Hz. These intervals are fully 
consistent with the transmittance spectrum results shown in Fig. 5.

A careful comparison between Fig. 7 and Fig. 5 reveals a noteworthy feature: the absence of a band gap within the frequency range 
of 699.1–783.0 Hz for the isotactic chiral metamaterial. This observation prompts the question of whether the identified vibration 
suppression region should be considered a band gap. To explore this issue further, we will examine the vibration suppression zone 

Table 2 
Material parameters of the chiral metamaterials.

Material parameter Symbol Value Material parameter Symbol Value

Mass density ρ 1160 kg/m3 Poisson’s ratio μ 0.41
Young’s modulus E 2.51 × 109N/m2 Shear modulus G 8.90 × 108N/m2
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through two different perspectives, as detailed below.
On the one hand, it is well-established that the band gap in metamaterials often remains invariant with respect to the number of 

unit cells. For this reason, we analyze the transmittance spectra of three isotactic chiral metamaterials, each consisting of 6 to 10 
elementary cells. As presented in Fig. 8, the first vibration suppression zone exhibits a constant width across all configurations. In 
contrast, the second vibration suppression zone narrows progressively as the number of elementary cells increases. On the other hand, 
Fig. 9 also illustrates the vibration modes corresponding to specific frequencies within the attenuation zones. Except for Fig. 9(b), 
where the response differs, all subplots reveal a consistent decay in vibration displacement along the x-direction. However, for the 
second vibration suppression zone of the isotactic chiral metamaterial, as shown in Fig. 9(b), the largest vibration displacement occurs 
at the output end, with the smallest displacement situated at the central cell. Notably, the vibration transmittance in this zone does not 

Fig. 4. Experiment verification on the vibration suppression performance. (a) Prototype of the isotactic chiral metamaterial; (b) Prototype of the 
syndiotactic chiral metamaterial. (c) Experimental measurement of vibration transmittance response.

Fig. 5. Comparison of the transmission spectrums obtained by the theoretical prediction, FE simulation, and experimental test. (a) Transmission 
spectrum of the isotactic chiral metamaterial; (b) Transmission spectrum of the syndiotactic chiral metamaterial.
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Fig. 6. Structural deformation at the resonant peak within the high-frequency zone. (a) Vibration mode of the isotactic chiral metamaterial at 861.4 
Hz. (b) Vibration mode of the syndiotactic chiral metamaterial at 1005.1 Hz.

Fig. 7. Band structure of symmetric longitudinal mode for metamaterials. (a) and (b) are the band structures for the isotactic and syndiotactic chiral 
metamaterials, respectively. The band gaps are highlighted as aqua regions.

Fig. 8. Transmittance of the isotactic chiral metamaterials with different elementary cells. The width of the second vibration suppression zone 
gradually narrows with the increase of elementary cells, while that of the first zone is constant.
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align with the typical properties of a band gap. As demonstrated above, the frequency range of 699.1–783.0 Hz should be classified as 
an ordinary vibration attenuation region rather than a genuine band gap for the isotactic chiral metamaterial.

5. Further discussion

After elucidating the band gap properties of chiral metamaterials, this section will provide a deep insight into the wideband 
mechanism of the syndiotactic chiral metamaterial. Moreover, we will discuss the tunability and programmability of the band gaps in 
such metamaterials, highlighting their potential for adaptive functionality.

5.1. Wideband mechanism of syndiotactic chiral metamaterials

As depicted in Fig. 5, the syndiotactic chiral metamaterial is capable of generating more and wider band gaps than the isotactic 
chiral metamaterial. However, Fig. 10 provides evidence that the transmittance spectra for the left- and right-handed chiral elementary 
cells are identical. What factors contribute to the differences in band gap characteristics between isotactic and syndiotactic chiral 
configurations? This subsection seeks to provide a comprehensive investigation into this intriguing phenomenon.

Firstly, we examine the frequency responses of the isostatic and syndiotactic chiral configurations, each comprising two elementary 
cells. As illustrated in Fig. 10, the first and fifth resonant peaks of the isostatic configuration occur at lower frequencies than those of 
the syndiotactic configuration, while the third resonant peak of the isostatic configuration appears at a higher frequency. In particular, 
the second and fourth resonant peaks of the isostatic configuration align in frequency with those of the syndiotactic configuration. This 
correspondence is primarily attributed to the same total mass and compression stiffness in both configurations. Moreover, the third 
vibration suppression region of the syndiotactic chiral configuration exhibits a broader span than that of the isostatic configuration. 
These findings suggest that the arrangement sequence of chiral metamaterials plays a critical role in determining their band gap 

Fig. 9. Vibration transmittance modes of isotactic and syndiotactic chiral metamaterials within the vibration suppression zones. (a) and (b) are the 
vibration transmittance modes of the isotactic chiral metamaterial at the frequency of 310 Hz and 715 Hz, respectively. (c), (d), and (e) are the 
vibration transmittance modes of the syndiotactic chiral metamaterial at the frequency of 170 Hz, 305 Hz, and 705 Hz, respectively.

Fig. 10. Transmittance spectra of fundamental chiral metamaterials for longitudinal vibrations. Both left-handed and right-handed chiral 
elementary cells display identical transmittance spectra. In contrast, isostatic and syndiotactic chiral configurations, which incorporate two 
elementary cells, yield distinct vibrational responses.
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characteristics.
The following discussion focuses on explaining the mechanism of wide bandgap generation. Fig. 11 shows the vibration orienta

tions of oscillators during wave propagation in both isostatic and syndiotactic chiral structures. Initially, the vibration direction is 
along the x-axis with a phase of zero, leading to an incident wave that is excited in a translational manner. As the wave passes through 
the first elementary cell, the compressive-torsional coupling effect causes the translational displacement u1 to divide into two com
ponents: the translation u2 and the rotation φ2. These components are subsequently scattered by the second elementary cell, generating 
four new waves: u31, u32, φ31, and φ32. Specifically, u31 and u32 are translational vibrations, while φ31 and φ32 are rotational vibrations.

In the case of the isostatic chiral configuration, the propagation direction of the scattered waves is depicted in Fig. 11(a). Initially, 
the translation component u2 is along the + x axis, and the rotation φ2 rotates clockwise around the + x axis. After the second 
scattering, considering u2 as the incident wave, the scattered wave u31 propagates along the + x axis, with the rotation φ31 rotating in a 
clockwise direction. Likewise, when φ2 serves as the incident wave, the displacement wave u32 initially moves along the + x axis, and 
φ32 also follows a clockwise rotation. Therefore, both translation components, u31 and u32, as well as both rotational components, φ31 
and φ32, maintain a consistent orientation. Ultimately, the rotational angle φ3 in the isostatic chiral configuration can be determined as 

φ3 = φ31 +φ32 = c(u2 − u31)+ (φ2 − cu32) = c(u2 − u31)+ [c(u1 − u2) − cu32] = c(u1 − u3) (20) 

where c is the compressive-torsional coupling coefficient of each elementary unit.
For the syndiotactic chiral configuration, as depicted in Fig. 11(b), the scattered wave u31 propagates along the + x axis, while the 

wave φ31 rotates in a clockwise direction. Meanwhile, the direction of u32 is reversed to the –x axis, with φ32 rotating counterclockwise. 
As a result, the rotational angle φ3 of the syndiotactic configuration is expressed as: 

φ3 = φ32 − φ31 = (φ2 − cu32) − c(u2 − u31) = [c(u1 − u2) − cu32] − c(u2 − u31) = c(u1 + u3 − 2u2) (21) 

As discussed above, the scattered waves vibrating in the same modes exhibit opposite vibration directions in a syndiotactic chiral 
configuration. Hence, the arrangement sequence directly affects the wave propagation behaviors of chiral metamaterials, thereby 
resulting in differences in the band gap formations.

Furthermore, band gap edge eigenmodes are provided to elucidate the formation mechanism of syndiotactic chiral metamaterials. 
Examining the modes at the edges of the band gap in the isostatic chiral metamaterial, as illustrated in Fig. 12(a) and (b), with 
particular attention to the upper bound edge mode in Fig. 12(b), reveals that the band gap observed in Fig. 7(a) arises from the 
translational local resonance of the rudder oscillators. The second to fourth-row subfigures in Fig. 12 serve to clarify the formation 
mechanism behind the three band gaps of the syndiotactic chiral metamaterial in Fig. 7(b). The modes depicted in Fig. 12(c) and (d) 
demonstrate that the rubber oscillators exhibit in-phase motions with the substrate plates to which they are attached. This indicates 
that the first band gap does not stem from the local resonance of the rubber oscillators for the syndiotactic chiral metamaterial. A 
comparison of the rotation directions of the three consecutive substrate plates, from bottom to top, reveals that phase inversion occurs 
alternately, leading to a destructive interference effect on wave propagation from one substrate plate to another. This phenomenon is 
observed in the syndiotactic chiral metamaterial but not in the isostatic counterpart because of the alternating chirality of adjacent 
cells within the syndiotactic chiral structure. The formation mechanism of the second band gap in the syndiotactic chiral metamaterial 
is elucidated in Fig. 12(e) and (f). Similar to the first band gap observed in the isostatic chiral metamaterial, the translational vibrations 
of the rudder oscillators are out of phase with the substrate plates to which they are affixed, resulting in a counteracting force that 
mitigates vibration. Concerning the third band gap of the syndiotactic chiral metamaterial, Fig. 12(g) and (h) illustrate that rotational 
modes predominantly govern the vibration of the entire structure over this frequency range. The in-plane vibrations of the rudder 
oscillators, which exhibit characteristics like rotation, effectively inhibit the clockwise vibrations of the substrate plates they attach to. 
Therefore, it can be concluded that the third band gap also arises from the local resonance mechanism of the rudder oscillators, albeit 
characterized by in-plane rotation-like resonance.

Fig. 11. Movement decomposition for (a) isostatic chiral configuration, and (b) syndiotactic chiral configuration. Due to the compressive-torsional 
coupling effect, both translational and rotational waves are scattered into two distinct components after passing through an elementary unit, with 
their propagation directions being affected by the tacticity.
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5.2. Bandgap tunability of chiral metamaterials

As presented in the introduction, the band gaps of metamaterials are generally constrained by fixed vibrational properties, making 
them unsuitable for environments with fluctuating frequencies. For the metamaterials with tunable band gaps, they are primarily 
classified into two categories. One is empowered by smart materials like shape memory polymers to adapt to external loads, and the 
other is to modify the geometric configuration. The latter is often achieved at the sacrifice of structural integrity and load-bearing 
capacity. Especially for achieving band gaps within 1000 Hz, tunable metamaterials usually suffer from weak static strength.

For such chiral metamaterials, cantilever beams are structured as screws to adjust the distance r2 between the mass blocks and the 
substrate plate. This structural design with the screw-and-nut mechanism facilitates the customization of band gaps, allowing them to 
be fine-tuned to meet the vibration suppression requirements of various engineering applications. As illustrated in Fig. 13, the main 
band gaps of both isotactic and syndiotactic chiral metamaterials shift to lower frequencies as r2 increases. In the case of the syn
diotactic chiral metamaterial at r2 = 35 mm, the primary three band gaps occur in the frequency ranges of 159.8–479.2 Hz, 

Fig. 12. Bandgap edge eigenmodes of the chiral metamaterials. (a) and (b) present the upper and lower edge modes of the band gap of the isostatic 
chiral metamaterial. (c) and (d) display the upper and lower edge modes of the first band gap of the syndiotactic chiral metamaterial. (e) and (f) 
demonstrate the upper and lower edge modes of the second band gap of the syndiotactic chiral metamaterial. (g) and (h) showcase the upper and 
lower edge modes of the third band gap of the syndiotactic chiral metamaterial.
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725.4–837.9 Hz, and 1081.6–1248.1 Hz, with normalized widths of 0.997, 0.144, and 0.143, respectively. Compared to the syndio
tactic configuration at r2 = 55 mm, the first band gap widens, whereas the second and third band gaps narrow. Additionally, a new 
band gap appears within the frequency range of 507.5–543.7 Hz.

It is noteworthy that both the chiral direction and distance adjustment of elementary cells do not affect the load-bearing perfor
mance of the metamaterial. As demonstrated in Fig. 14, these configurations are of the same effective compression stiffness (209.38 N/ 
mm). In particular, the total mass of the metamaterial remains constant throughout these adjustments. Therefore, such chiral meta
materials can achieve bandgap tunability without sacrificing their overall support stiffness and relative mass. Moreover, the equivalent 
strain resulting from a compressive force of 500 N for these configurations remains well within the failure strain limit (4.6 %) of the 
selected material, highlighting the effective load-bearing strength of the chiral metamaterials.

5.3. Effects of tilt angle and boundary conditions

In addition to the distance adjustment, the tilt angle and boundary conditions also have remarkable effects on the chiral meta
materials. As shown in Fig. 15, reducing the tilt angle, which enhances the structural chirality, leads to an expansion of the first and 
third band gaps. Moreover, for these two band gaps, their start frequencies shift downward, and cut-off frequencies move upward. 
Hence, if the material permits twisting, band gaps can also be manipulated effectively through shape morphing.

Furthermore, we observe that the constraints imposed on the unit cell also influence the band gap properties of the chiral meta
materials. As depicted in Fig. 16, two distinct types of constraints are applied to the substrate plates. Specifically, the “ON” status refers 
to applying a rotational constraint to the plates, while the “OFF” status indicates the unconstrained condition. The transmission 
profiles shown in Fig. 16 demonstrate that the rotational constraint significantly alters the band gap behaviors of the chiral 
metamaterials.

5.4. Bandgap programmability of chiral structures

More instrsteingly, the presence of both left- and right-handed chirality offers a versatile design strategy, while maintaining 
consistent relative density at the same time. By leveraging arbitrary coding techniques, it becomes possible to design a wide variety of 
3D chiral mechanical metamaterials that integrate left- and right-chiral elementary units. Moreover, non-chiral elementary units can 
also be incorporated into the metamaterial design. These elementary units enable precise control over wave propagation within the 3D 
chiral mechanical metamaterial, allowing for the manipulation of chirality direction and the creation of tailored waveguides.

To further reveal the application potential of such chiral metamaterials, the effect of different code sequences on vibration sup
pression is assessed here. Similar to a binary coding scheme, the left- and right-chiral elementary units are assigned the values “1” and 
“2”, respectively, while the non-chiral unit is treated as “0”. By applying the concept of 3-bit configurations, there are 3n possible 
configurations for a meta-structure consisting of n elementary units. Typically, metamaterials are periodic, but incorporating disorder 
into their design can provide enriched functionalities over ordered structures. These diverse combinations provide a wealth of options 
for achieving waveguide control over a wide range of frequencies.

As displayed in Fig. 17 (a), new metamaterials are constructed by switching the 3-bit configurations, which include periodic, 
mirror, and random arrangements. The corresponding transmittance spectra are shown in Fig. 17 (b). Among the configurations tested, 

Fig. 13. Tunability of the band gaps for chiral metamaterials. (a) and (b) provide the dynamic responses of isotactic and syndiotactic chiral 
metamaterials, respectively. As depicted in the schematic diagrams on the right side, the distance (r2) between the mass blocks and the substrate 
plated is adjustable, thereby achieving the programable band gaps.
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the three chiral materials attributed to the inertial amplification [60,61] exhibit more vibration suppression regions than the non- 
chiral structure. In addition to the constant second attenuation region, variations in the code sequences alter both the width and 
the position of the band gaps. This clearly demonstrates that each configuration produces distinct band gaps, confirming the tunability 
and programmability of the bandgap properties in chiral metamaterials.

Fig. 14. Effective stiffness of different chiral metamaterials. (a) Displacement responses of syndiotactic and isotactic configurations with r2 = 55 
mm under compression; (b) Displacement responses of syndiotactic and isotactic configurations with r2 = 35 mm under compression. These four 
configurations have the same effective compression stiffness of 209.38 N/mm. Subplots (c) and (d) illustrate the equivalent strain under a 
compression force of 500 N for isotactic configurations I and III, respectively. Similarly, (d) and (e) show the equivalent strain under the same 
compression force for syndiotactic configurations II and IV, respectively. The resulting maximum strain of these configurations is 3.1 %, which is 
lower than the failure strain (4.6 %) of the selected material.

Fig. 15. Effects of the tilt angle on the transmittance spectra of syndiotactic chiral metamaterials. (a) Geometric configuration of the unit cells with 
various tilt angles for the chiral materials under investigation. (b) Bandgap characteristics of different syndiotactic chiral metamaterials with four 
unit cells.
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As discussed above, the diverse combinations of elementary cells allow for the development of various 3D chiral mechanical 
metamaterials, with coding sequences specifically tailored to achieve the desired vibration attenuation. Note that the developed 
theoretical framework is capable of accurately predicting the dynamic response of such metamaterials, thereby facilitating the 
foundation of a comprehensive data library linking topological configurations to performance outcomes. This advancement paves the 
way for applying machine learning techniques [72,73] to identify both optimal sequence and geometric parameters for targeted 
engineering applications, such as vibration suppression in deployable structures for spaceborne antennas [74,75].

6. Conclusion

In this work, a novel design strategy has been presented for developing chiral mechanical metamaterials with tunable band gaps. 
Based on thorough theoretical analyses and extensive technical discussions, the interesting observations and key findings are sum
marized below.

(1) By integrating adjustable rudder oscillators into chiral structures, the proposed mechanical metamaterials can achieve tunable 
band gaps within 1000 Hz, which are attributed to the coupling effects between the inherent inertial amplification and the incor
porated local resonators.

(2) The results of FE simulations and experimental tests have proven that the developed theoretical model exhibits high accuracy 
and efficiency in predicting the dynamic response of such chiral mechanical metamaterials.

(3) The band structure analysis of chiral mechanical metamaterials reveals that the syndiotactic configuration generates more and 
broader band gaps owing to destructive interference. Interestingly, the second vibration attenuation region in the isotactic configu
ration is not a genuine band gap.

(4) Both adjustable rudder oscillators and programmable tacticity subsequences offer effective means of manipulating the band 
gaps of the chiral mechanical metamaterials without changing their overall weight, structural integrity, and load-bearing capacity.

In conclusion, this study provides valuable insights into the fundamental mechanisms behind the band gap formation in chiral 
mechanical metamaterials. Moreover, it establishes a reliable and highly efficient theoretical framework for the design and optimi
zation of such tunable chiral metamaterials, thereby paving the way for promoting their practical applications in various engineering 
scenarios.
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Appendix A. . Geometric and force transformation relationships at shifted nodes

Based on the principles of solid mechanics, the geometric relationships and force equilibrium equations between nodes j and j′ are 
derived as follows [67]: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uj́ = uj + βjΔz1 − γjΔy1, Fxj́ = Fxj
vj́ = vj − αjΔz1 + γjΔx1, Fyj́ = Fyj
wj́ = wj + αjΔy1 − βjΔx1, Fzj́ = Fzj

αj́ = αj, Mxj́ = Mxj + FyjΔz1 − Fzj́ Δy1
βj́ = βj, Myj́ = Myj − FxjΔz1 + FzjΔx1
γ j́ = γj, Mzj́ = Mzj + FxjΔy1 − FyjΔx1

(A.1) 

Fig. 17. Bandgap characteristics of different structures. For brevity, the letters “L”, “R”, and “S” are short for left chiral cell, right chiral cell, and 
straight cell (without chirality), respectively. The chiral structure (a) is with the combination of “LLRRLLRR” cells. The chiral structure (b) is 
composed of “LRLRRLRL” cells, which are symmetric with the upper surface of the fourth cell. The chiral elementary cells are randomly arranged to 
form the chiral structure (c), whose configuration is represented by “LRLRRLRL”. For the structure (d), no chirality exists in its elementary cells, and 
this configuration is termed “SSSSSSSS”. Taking the transmittance response of the syndiotactic chiral metamaterial (LRLRLRLR) as a benchmark, the 
subplot (e) depicts the variety of band gaps of the above structures.
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Here, the vector (Δx1, Δy1, Δz1) defined in the global coordinate system is the relative displacement from the end node j to the node j′.

Appendix B. . Dynamic equilibrium equations for an elementary cell

Following d’Alembert’s principle, the forces acting on each node are equivalent to the sum of the reaction forces exerted by the 
connected flexible beams, the external forces, and the inertial forces inherent to the node. For an elementary cell, the principle yields 
the following sets of force equilibrium equations for the ten nodes: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Node 1 : Fi(ω) = F1,j́ + Mpx1

Node 2 : Fo(ω) = F1,kʹ + Mpx2 +
∑9

a=2
Fa,j́

Node 3 : 06×1 = F2,kʹ + Mbx3

Node 4 : 06×1 = F3,kʹ + Mbx4

, ⋯
Node 9 : 06×1 = F8,kʹ + Mbx8

Node 10 : 06×1 = F9,kʹ + Mbx9

(A.2) 

where Fi(ω) and Fo(ω) are forces applying on the input and output ports, respectively; xn is the nodal displacement vector of the n-th 
node; Mp and Mb are the inertial matrices of the substrate plate and the mass block, respectively. Taking the substrate plate as an 
example, its inertial matrix is determined by 

Mp = − ω2
[

M3×3 03×3
03×3 J3×3

]

,M3×3 =

⎡

⎣
mp 0 0
0 mp 0
0 0 mp

⎤

⎦, J3×3 =

⎡

⎣
Jx 0 0
0 Jy 0
0 0 Jz

⎤

⎦ (A.3) 

where mp denotes the mass of the substrate plate; Jx, Jy, and Jz correspond to the mass moments of inertia about the coordinate axes at 
the geometric center of the upper surface of the substrate plate.

Appendix C. . Dynamic stiffness matrix of an elementary cell

According to Eq.(10), the dynamic stiffness matrix Ds of an elementary cell can be readily derived, and its expression is given by 

Ds =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1, 1 + Mp D1, 2 06×6 ⋯ 06×6 06×6 06×6

D1, 3 D1, 4 + Mp +
∑9

a=2
Da, 1 D2, 2 ⋯ D7, 2 D8, 2 D9, 2

06×6 D2, 3 D2, 4 + Mb ⋯ 06×6 06×6 06×6

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

06×6 D7, 3 06×6 ⋯ D7, 4 + Mb 06×6 06×6

06×6 D8, 3 06×6 ⋯ 06×6 D8, 4 + Mb 06×6

06×6 D9, 3 06×6 ⋯ 06×6 06×6 D9, 4 + Mb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.4) 
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